ВЛИЯНИЕ ЦИКЛОВ ВЫСУШИВАНИЯ-УВЛАЖНЕНИЯ НА МИКРОСТРУКТУРУ И МЕХАНИЧЕСКИЕ СВОЙСТВА ВЫВЕТРЕЛЫХ ГРАНИТНЫХ ПОРОД Effects of drying-wetting cycles on microstructure and mechanical property of granite residual soils
Аннотация
Для изучения влияния циклов высушивания-увлажнения на микроструктуру и механические свойств выветрелых гранитных пород были проведены испытания на трехосный сдвиг и магнитно-резонансное сканирование. Выявлена взаимосвязь между распределением пор и параметрами прочности на сдвиг, а также микроскопический механизм воздействия циклов сушки-увлажнения.
Кривая объемного распределения пор выветрелого гранита показала основной и вторичный пики, которые соответствуют микро- и макропорам соответственно. По мере увеличения числа циклов высушивания-увлажнения пропорции распределения микропор оставались почти постоянными, в то время как макропор – резко изменялись. Исследования показали, что пористость нелинейно возрастала с увеличением числа циклов высушивания-увлажнения. Тенденция к ослаблению механических свойств развивалась синхронно с развитием повреждений микроструктуры, что обусловлено воздействием сил набухания на стенки пор и потерями мелких частиц глины.
Полный текст статьи публикуется в английской версии журнала «Soil Mechanics and
Foundation Engineering” vol.58, No.6
Литература
X. W. Zhang, L. W. Kong, S. Yin and C. Chen, “Engineering geology of basaltic residual soil in Leiqiong, southern China,” Engineering Geology, 220, 196-207 (2017).
E.A. Mohamedzein and M.H. Aboud, “Compressibility and shear strength of a residual soil,” Geotechnical and Geological Engineering, 24(5): 1385-1401(2006).
G. Rajaram and D. C. Erbach, Effect of wetting and drying on soil physical properties. Journal of Terramechanics, 36(1): 39-49 (1999).
M.Kholghifard, K.Ahmad, N. Ali, A. Kassim, and R. Kalatehjari, “Collapse/swell potential of residual laterite soil due to wetting and drying-wetting cycles,” National Academy Science Letters, 37(2): 147-153 (2014).
S.M. Rao, and K. Revanasiddappa, “Influence of cyclic wetting drying on collapse behavior of compacted residual soil,” Jour. Geotech. Geo. Eng., 24, 725-734 (2006).
L.W. Kong, H.M. Sayem, H.Tian, “Influence of drying-wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) relaxometry,” Canadian Geotechnical Journal, 55(2): 208-216 (2018).
H.M. Sayem, L.W. Kong, and S.Yin, 2016. Effect of Drying-Wetting Cycles on Saturated Shear Strength of Undisturbed Residual Soils. American Journal of Civil Engineering, 4(4): 143-150.
L. F. Pires, M. Cooper, F.A.M. Cássaro, K. Reichardt, O. O. S. Bacchi, and N. M. P. Dias, “Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles,” Catena, 72, 297-304 (2008).
W. Bai, L. W. Kong, A. G. Guo, et al. (2017) “Stress-strain-electrical evolution properties and damage evolution equation of lateritic soil under uniaxial compression,” ASTM international Journal of Testing and Evaluation. 45(4), 1247-1260.
S.K. Mohanty, J.E.Saiers, and J.N. Ryan, “Colloid mobilization in a fractured soil during dry–wet cycles: role of drying duration and flow path permeability,” Environmental Science and Technology, 49(15), 9100-9106(2015).
K.R. Olson, “Characterization of Pore Size Distribution within Soils by Mercury Intrusion and Water-release Methods,” Soil Science, 139(5), 400-404 (1985).
F.J.Leij, T.A.Ghezzehei, D. Or, “Analytical models for soil pore-size distribution after tillage,” Soil Science Society of America Journal, 66(4): 1104-1114 (2002).
T.Sparrman, M. Oquist, L. Klemedtsson, S. Jürgen, and M. Nilsson, “Quantifying unfrozen water in frozen soil by high-field 2h NMR,” Environmental Science and Technology, 38(20): 5420-5425(2004).
F. Gao, Q. Wang, H. Deng, et al., “Coupled effects of chemical environments and freeze-thaw cycles on damage characteristics of red sandstone,” Bulletin of Engineering Geology and the Environment, 76(4), 1481-1490(2016).
ASTM-D422, Standard test method for particle-size analysis of soils. West Conshohoken, PA: Annual Book of ASTM Standards, ASTM (2007).
ASTM-D2166, Standard test method for unconfined compressive strength of cohensive soil. West Conshohoken, PA: Annual Book of ASTM Standards, ASTM (2000.).
L.A.Davis, G.A.Martinez, T. H. Hassoun, and N. K. Vrubel, “The modulation of coupled relaxation in porous media,” Magnetic Resonance Imaging, 19(3-4), 369-373 (2001).
H.Tian, C.Wei, and H.Wei, “An NMR-Based Analysis of Soil-Water Characteristics,” Applied Magnetic Resonance, 45, 49-61(2014).
H.Daigle, B. Dugan, “Extending NMR data for permeability estimation in fine-grained sediments,” Marine and Petroleum Geology, 26, 1419-1427(2009).
H. R. Xiong, K. L. Yuan, M. J. Wen, et al. “Influence of pore structure on the moisture transport property of external thermal insulation composite system as studied by NMR,” Construction and Building Materials, 228 (2019).
Z. Zeng, L.W. Kong, M. Wang, and H.M. Sayem, “Assessment of the engineering behaviour of an intensely weathered swelling mudstone under the full range of seasonal variation and the relationships among the measured parameters,” Canadian Geotechnical Journal, 55(12):1837-1849 (2018).
Ссылки
- На текущий момент ссылки отсутствуют.