ПОВЕДЕНИЕ СВАЙНЫХ ФУНДАМЕНТОВ НА ПРЕДВАРИТЕЛЬНО УПЛОТНЕННЫХ ГРУНТАХ, ПОДВЕРЖЕННЫХ РАЗЖИЖЕНИЮ Behaviour of Pile Foundations built on Dynamically Compacted Liquefaction Susceptible Soil
Аннотация
Разжижение грунтов, вызванное землетрясением, представляет серьезную проблему для свайных фундаментов глубокого заложения, подвергающихся значительным сдвиговым усилиям и изгибающим моментам во время сейсмических событий. Рассматривается возможность динамического уплотнения грунтов верхней части основания, как метод повышения эксплуатационных характеристик свай. Метод направлен на предотвращение разжижения и повышение сейсмостойкости вмещающего массива, увеличение несущей способности на горизонтальные нагрузки, и позволяет сократить необходимую глубину заделки свай. Валидация проводится с использованием методологии, предусмотренной индийскими стандартами (IS), и численных исследований в программном комплексе Ensoft L-Pile. Тема актуальна для специалистов, занимающихся устройством свайных фундаментов в песчаных грунтах в сейсмически активных регионах.
Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering”, vol.62, No.5
Литература
Kramer Steven L, Geotechnical Earthquake Engineering, PEARSON, 2012
Asskar Janalizadeh, Ali Zahmatkesh, “Lateral response of pile foundations in liquefiable soils.” Journal of Rock Mechanics and Geotechnical Engineering 7 (2015) 532-539
Bhattacharya S. and Madabhushi S. P. G. (2008) A critical review of methods for pile design in seismically liquefiable soils. Bull Earthquake Eng (2008) 6:407–446
IS: 2131-1981 Reaffirmed 2021 Method for Standard Penetration Test for Soils (1st Revision)
IS 1893 (Part 1): 2016 Criteria for Earthquake Resistant Design of Structures Part 1 – General Provisions and Buildings (Sixth Revision)
IRC SP: 114 – 2018 Guidelines for Seismic Design of Road Bridges
IS 13094: 2021 Selection of Ground Improvement Techniques for Weak Soils — Guidelines (First Revision)
Robertson, P.K. and Wride, C. E. (1997). “Cyclic liquefaction and its evaluation based on the SPT and CPT,” Proceedings of the NCEER workshop on Evaluation of Liquefaction Resistance of Soils, Dec., 1997, University of California.
Youd, T.L., Idriss, I.M., “Liquefaction resistance of soils summary: Report from 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soil,” Journal of Geotechnical and Geoenvironmental. Engineering, ASCE, 127, 817–833.
Seed, H. B. and Idriss, I. M., “Simplified procedure for evaluating soil liquefaction potential.” Journal Soil Mechanics & Foundation Engineering. ASCE, 97(SM9): pp. 1249–1273, 1971.
Seed, H. B. and Idriss, I. M., “Ground motions and soil liquefaction during earthquakes,” Earthquake Engineering Res. Institute, Berkeley 134 pp, 1982.
Seed, H. B., Idriss, I. M. and Arango, I., “Evaluation of liquefaction potential using field performances data,” Journal Geotech Engineering ASCE 109(3):458–483, 1983.
Seed, H. B., Tokimatsu, K., Harder, L. F. and Chung, R., “Influence of SPT procedures in soil liquefaction resistance evaluations,” Journal Geotech. Engineering ASCE 111(12) pp.1425–1445, 1985.
Boulanger, R.W. and Idriss, I.M. (2014). “CPT and SPT based liquefaction triggering procedures, ”Report No. Ucd/Cgm-14/01 Center for Geotechnical Modelling Department of Civil and Environmental Engineering University of California, Davis, California.
IS 2911 (Part 1/Sec 2): 2010 Indian Standard Design and Construction of Pile Foundations — Code of Practice Part 1 Concrete Piles Section 2 Bored Cast In-situ Concrete Piles (Second Revision).
LPILE a software (program) based on rational procedures for analyzing a pile under lateral loading using the p-y method.
Brinch Hansen J (1951) “The Ultimate Resistance of Rigid Foundation Piles against Transversal Forces”, Danish Geotechnical Institute (Copenhagen) Bulletin 12.
Meyerhof, G.G. and Ranjan, Gopal (1973) “The Bearing Capacity of Rigid Piles under Inclined Loads in Sand – Part II – Batter Piles”, Canadian Geotechnical Journal, Vol. 10, No. 1, 1973, p. 71.
Reese, L.C. and Matlock, H. (1956), “Non-Dimensional Solutions for Laterally Loaded Piles with Soil Modulus assumed proportional to Depth”, Proceedings 8th Texas Conference on SMFE, Special publication 29, Bureau of Engineering Research, University of Texas, Austin.
Davisson, M.T. (1960), “Behaviour of Flexible Vertical Piles subjected to Moment, Shear and Axial Load”, Ph.D Thesis, University of Illinois, Urbana III..
Davisson, M.T. and Gill, H.L. (1963), “Laterally Loaded Piles in Layered Soils System”, Proc. ASCE Vol. 89, SM-3, p. 63.
Dash, S.R., Bhattacharya, S. and Blakeborough, A. (2010). “Bending-buckling interaction as a failure mechanism of piles in liquefiable soils,” Soil Dynamics and Earthquake Engineering, 30 (1-2), 32-39.
Maheshwari, B.K., Truman, K.Z., EI Naggar, M.H. and Gould, P. L. (2004). “Three – dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations”, Canadian Geotechnical Journal, 41, 118 – 133.
FLAC3D (2009). “Fast Lagrangian Analysis of Continuaversion 4.0,” Itasca Consulting Group, Minneapolis, Minnesota, U.S.A.
Ссылки
- На текущий момент ссылки отсутствуют.
Основания, фундаменты и механика грунтов