АНАЛИЗ СОВРЕМЕННЫХ МОДЕЛЕЙ ГРУНТА ДЛЯ ИССЛЕДОВАНИЯ РАЗЖИЖЕНИЯ ОСНОВАНИЙ
Аннотация
Рассматриваются основные характеристики и входные параметры моделей HS small, UBC3D-PLM и PM4Silt для расчета системы «основание–свайный фундамент–сооружение» при землетрясении. Результаты расчета показывают существенные отличия между моделями для оснований, сложенных водонасыщенными
песчаными и глинистыми грунтами, особенно при учете разжижения грунтов.
Полный текст:
PDFЛитература
Тер-Мартиросян А.З., Ле Дык Ань, Манукян А.В. Влияние разжижения грунтов на расчетную несущую способность сваи // Вестник МГСУ. 2020. Т. 15. Вып. 5. С. 655–664
Ter-Martirosyan A.Z., Le Duc Anh. Calculation of the settlement of pile foundations taking into account the influence of soil liquefaction. IOP Conference Series: Materials Science and Engineering. 2020, 869, 052025.
Chaloulos Y.K., Giannakou A., Drosos V., Tasiopoulou P., Chacko J., de Wit S. Liquefaction-induced settlements of residential buildings subjected to induced earthquakes. Soil Dynamics and Earthquake Engineering. 2020, 129, 105880.
Константинова Т.Г. влияние разжижения грунтов на макросейсмические последствия сильных землетрясений // Инженерные изыскания. 2015. № 13. С. 28–33.
Seed H.B., Idriss I.M. Analysis of soil liquefaction Niigata earthquake. Journal of the Soil Mechanics and Foundations Division. 1967, 93(3), 83–108.
Seed H.B. Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquakes. Journal of the Geotechnical Engineering Division. 1979,105 (2).
Seed H.B. Design Problems in Soil Liquefaction. Journal of Geotechnical Engineering. 1987, 113(8).
Вознесенский Е.А., Кушнарева Е.С. Сейсмическая разжижаемость грунтов: инженерная оценка и классифицирование // Инженерная геология. 2012. № 2. С. 11–23.
Вознесенский Е.А. Динамические испытания грунтов. Состояние вопроса и стандартизация // Инженерные изыскания. 2013. № 5. С. 20–26.
Prakash S., Puri V. Liquefaction of Silts and Silt-Clay Mixtures. Journal of Geotechnical and Geoenvironmental Engineering. 1999, 125(8).
Ross W. Boulanger and Idriss I. M. Liquefaction Susceptibility Criteria for Silts and Clays. Journal of Geotechnical and Ge-oenvironmental Engineering. 2006, 132(1).
Thevanayagam S., Martin G.R. Liquefaction in silty soils—screening and remediation issues. Soil Dynamics and Earthquake Engineering. 2002, 22, 1035-1042.
Schanz T., Vermeer P.A., Bonnier P.G. The hardening soil model: formulation and verification. Beyond 2000 in Computational Geotechnics. 1st ed. Routledge, 1999; 281–296.
Benz T. Small-Strain Stiffness of Soils and its numerical consequences. PhD. Thesis, University of Stuttgart, Germany, 2006.
Benz T., Vermeer P.A., Schwab R. A small-strain overlay model. International Journal for Numerical and Analytical Methods in Geomechanics. 2009, 33, 25–44.
Hardin B.O., Drnevich V.P. Shear Modulus and Damping in Soils. Journal of Soil Mechanics and Foundation Division. 1972, 98, 667–92.
Hardin, B.O., Black, W.L. Closure to vibration modulus of normally consolidated clays. Proc. ASCE: Journal of the Soil Mechanics and Foundations Division. 1969, 95(SM6), 1531–1537.
Peteris S., Kaspars B. Applicability of Small Strain Stiffness Parameters for Pile Settlement Calculation. Procedia Engineering. 2017, 172, 999-1006.
Amorosi A., Boldini D., di Lernia A., Rollo F. Three-dimensional advanced numerical approaches to the seismic soil and structural response analyses. 4th International Workshop on Dynamic Interaction of Soil and Structure. 2015.
Lu H., Athanasiu C. Seismic Analyses for Menta Embankment Dam: Nonlinear Dynamic Analyses with HS-Small (Hardening Small Strain) Model. In: Bolzon G., Sterpi D., Mazzà G., Frigerio A. (eds) Numerical Analysis of Dams. ICOLD-BW 2019. Lecture Notes in Civil Engineering, 91. Springer, Cham. 2021.
Yu H., Ntambakwa E. and Mendes B. Comparison of 1-D seismic site response analysis tools for layered liquefiable deposits at an offshore windfarm site. E3S Web of Conferences. 2020, 205, 12005.
Beaty M. and Byrne P. “UBCSAND constitutive model: Version 904aR”, Documentation Report: UBCSAND Constitutive Model on Itasca UDM Web Site, Boulanger R.W. Relating K_ to relative state parameter index. Journal of Geotechnical and Geo-environmental Engineering. 2011, 129(8). 770–773.
Daftari A., Kudla W. Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS. World Academy of Science, En-gineering and Technology International Journal of Civil and Environmental Engineering. 2014, 8, No. 2.
Ter-Martirosyan A.Z. and Othman A. Simulation of soil liquefaction due to earthquake loading. E3S Web Conf., 2019, 97, 03025.
Ahmed M.A.B., Ahmed M.H., Mohamed A.E.F., Amr M.M. Numerical analysis of liquefaction phenomenon by using UBC3D-PLM constitutive model. Journal of Advanced Engineering Trends (JAET).2019, 38, No. 2, 81-96.
Muhammad A.Z., Hans M., Sven K., Muhammad S.K., Maria V.S. Ask and Björn Lund. Numerical Analyses of Earthquake Induced Liquefaction and Deformation Behaviour of an Upstream Tailings Dam. Advances in Materials Science and Engineering. 2017, 1-12.
Elizaveta W., Lars B., Cornelis V., Dieter S. Modeling of liquefaction using two-phase FEM with UBC3D-PLM model. 1st International Conference on the Material Point Method. Procedia Engineering. 2017, 175, 349 – 356.
Galavi V., Petalas A. and Brinkgreve R.B.J.. Finite Element Modelling of Seismic Liquefaction in Soils. Geotechnical Engineering Journal of Ihe SEAGS &AGSSEA. 2013, 44, No. 3, 55-64.
Christos S. and Nikos G. Seismic effective stress analysis of quay wall in liquefiable soil: the case history of Kobe. Int. J. of GEOMATE. 2016, 10, No. 2, 1770-1775.
Assessment of liquefaction triggering: The UBC3D-PLM constitutive model versus semi-empirical methods based on SPT-N values. Electronic Journal of Geotechnical Engineering. 2015, 20(18), 10061-10071.
Petalas A., Galavi V., and Bringkreve R.B.J. Validation and verification of a practical constitutive model for predicting liq-uefaction in sands. Proceedings of the 22nd European young geotechnical engineers conference, Gothenburg, Sweden., 167-172, 2012.
Boulanger R.W. , Ziotopoulou K. PM4Sand (Version 3) - a sand plasticity model for earthquake engineering applications: report № UCD/CGM-15/01. Davis, CA, USA: Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California Davis, 2015.
Boulanger R.W., and Ziotopoulou K. (2018). “PM4Silt (Version 1): A silt plasticity model for earthquake engineering appli-cations.” Report No. UCD/CGM-18/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engi-neering, University of California, Davis, CA.
Dafalias Y.F. and Manzari M.T. Simple plasticity sand model accounting for fabric change effects. Journal of Engineering me-chanics. 2004, 130(6), 622-634
Boulanger, R.W. and Ziotopoulou, K., 2017. PM4Sand (Version 3.1): A sand plasticity model for earthquake engineering applications. Center for Geotechnical Modeling Report No. UCD/CGM-17/01, Department of Civil and Environmental En-gineering, University of California, Davis, CA.
Boulanger R.W. and Wijewickreme D. Calibration of a constitutive model for the cyclic loading response of Fraser River Delta Silt. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions: Proceed-ings of the 7th International Conference on Earthquake Geotechnical Engineering, (ICEGE 2019), Rome, Italy, 17-20/06/2019.
Boulanger R.W., and Ziotopoulou K. A constitutive model for clays and plastic silts in plane-strain earthquake engineering applications. Soil Dynamics and Earthquake Engineering. 2019, 127, 105832.
Ссылки
- На текущий момент ссылки отсутствуют.