УПРУГОПЛАСТИЧЕСКИЙ ПРОГНОЗ ОСАДОК ПЛИТНОГО ФУНДАМЕНТА, УСИЛЕННОГО СВАЯМИ РАЗНОЙ ДЛИНЫ С ПРОМЕЖУТОЧНОЙ ГРУНТОВОЙ ПОДУШКОЙ Elasto – plastic analysis for load-settlement prediction of vertically loaded cushioned piled-rafts with unequal pile lengths
Аннотация
Предложена методика оценки осадки при нагружении плитного фундамента, усиленного сваями разной длины, с компенсационным слоем грунта (грунтовой подушкой) непосредственно под плитой, учитывающая взаимодействие элементов фундаментной конструкции. Для описания относительного смещения грунта вокруг сваи во взаимосвязи с сопротивлением по боковой поверхности и/или под подошвой
сваи с учетом негативного трения на контакте «свая–грунт» рассматривается упругопластическое поведение. Грунтовая подушка моделируется в рамках Винклеровского подхода. Прогноз по предложенному методу показал хорошее соответствие результатам, полученным при крупномасштабном лабораторном
моделировании для свайно-плитного фундамента размерами 2×2 м с длинными и короткими сваями.
Полный текст:
PDF (English)Литература
Burland JB, Broms BB, De Mello VFB (1977) Behavior of foundation and structures. In: 9th Int. Conf. Soil Mechanics and Foundation Engineering. Tokyo, pp 495–546
Basile F (2015) Non-linear analysis of vertically loaded piled rafts. Computers and Geotechnics 63:73–82. https://doi.org/10.1016/j.compgeo.2014.08.011
Deb P, Pal SK (2019) Analysis of Load Sharing Response and Prediction of Interaction Behaviour in Piled Raft Foundation. Arab J Sci Eng 44:8527–8543. https://doi.org/10.1007/s13369-019-03936-1
El-Garhy BM (2022) A Simplified Method for the Nonlinear Analysis of Composite Piled Raft Foundation. Geotech Geol Eng 40:4357–4375. https://doi.org/10.1007/s10706-022-02159-w
Jeong S, Cho J (2014) Proposed nonlinear 3-D analytical method for piled raft foundations. Computers and Geotechnics 59:112–126. https://doi.org/10.1016/j.compgeo.2014.02.009
Nasrollahi SM, Seyedi Hosseininia E (2019) A simplified solution for piled-raft foundation analysis by using the two-phase approach. Comptes Rendus Mécanique 347:716–733. https://doi.org/10.1016/j.crme.2019.10.002
Halder P, Manna B (2022) Load transfer mechanism for connected and disconnected piled raft: a comparative study. Acta Geotech 17:3033–3045. https://doi.org/10.1007/s11440-021-01409-0
Poulos HG (2016) Tall building foundations: design methods and applications. Innov Infrastruct Solut 1:10. https://doi.org/10.1007/s41062-016-0010-2
Cui W, Zheng X (2018) Analysis of the Response of Pile Groups Considering Pile–Cap–Soil Interaction in Layered Soil. Soil Mech Found Eng 55:87–95. https://doi.org/10.1007/s11204-018-9508-2
Poulos HG, Davis EH (1980) Pile Foundation Analysis and Design. Robert E. Krieger Company, Malabar, Florida
Mylonakis G, Gazetas G (1998) Settlement and additional internal forces of grouped piles in layered soil. Géotechnique 48:55–72. https://doi.org/10.1680/geot.1998.48.1.55
Sales MM, Curado T da S (2018) Interaction Factor Between Piles: Limits on Using the Conventional Elastic Approach in Pile Group Analysis. SR 41:049–060. https://doi.org/10.28927/SR.411049
Zhang Q, Zhang Z (2011) Study on interaction between dissimilar piles in layered soils. Int J Numer Anal Meth Geomech 35:67–81. https://doi.org/10.1002/nag.893
Liu H, Liu Q (2021) An analytical model for the interaction between two dissimilar piles in a finite soil layer. Int J Numer Anal Methods Geomech 45:950–964. https://doi.org/10.1002/nag.3187
Yang Y, Zhang J (2022) Analysis of Features of Long and Short Pile Composite Foundation in High-Rise Buildings. Soil Mech Found Eng 59:92–101. https://doi.org/10.1007/s11204-022-09788-6
Zhang Q-Q, Liu S-W, Feng R-F, et al (2020) Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system. Front Struct Civ Eng 14:961–982. https://doi.org/10.1007/s11709-020-0632-5
Xie Y, Chi S (2020) Optimization Method of Reducing the Differential Settlements of Piled Raft Foundations Based on Pile-to-Pile Interaction Theory. Advances in Civil Engineering 2020:1–14. https://doi.org/10.1155/2020/1521876
Guo Y, Lv C, Hou S, Liu Y (2021) Experimental Study on the Pile-Soil Synergistic Mechanism of Composite Foundation with Rigid Long and Short Piles. Mathematical Problems in Engineering 2021:1–15. https://doi.org/10.1155/2021/6657116
Ma T, Zhu Y, Yang X (2020) Calculation of Bearing Capacity and Deformation of Composite Pile Foundation with Long and Short Piles in Loess Areas. Advances in Civil Engineering 2020:1–10. https://doi.org/10.1155/2020/8829779
Miao L, Wang F, Lv W (2018) A Simplified Calculation Method for Stress Concentration Ratio of Composite Foundation with Rigid Piles. KSCE Journal of Civil Engineering. https://doi.org/10.1007/s12205-018-1558-5
Yan S, Lang R, Sun L, et al (2017) Calculation of pile-soil stress ratio in composite foundation with rigid pile-net based on plate theory. Chinese Journal of Rock Mechanics and Engineering 36:2051–2060
Huang M, Jiu Y, Jiang J, Li B (2017) Nonlinear analysis of flexible piled raft foundations subjected to vertical loads in layered soils. Soils and Foundations 57:632–644. https://doi.org/10.1016/j.sandf.2017.04.004
Luo Q, Wei M, Lu Q, Wang T (2021) Simplified analytical solution for stress concentration ratio of piled embankments incorporating pile–soil interaction. Rail Eng Science 29:199–210. https://doi.org/10.1007/s40534-021-00236-z
Zhao M, Chen Q, Zhang L (2011) Calculation of Pile-soil Stress Ratio of Rigid Pile Composite Foundation with Consideration of Upward Penetration of Piles. J Highway Transp Res Dev (English Ed) 5:1–6. https://doi.org/10.1061/JHTRCQ.0000033
Chen J, Zheng J, Chen B, Lu Y (2008) Analysis of working behavior of rigid pile composite ground considering influence of negative skin friction. Rock and Soil Mechanics 29:1955-1959.
Wu C, Guo W, Li Y, Tie R (2016) Calculation of neutral surface depth and pile-soil stress ratio of rigid pile composite foundation considering influence of negative friction. Chinese Journal of Geotechnical Engineering 38:278–287. https://doi.org/10.11779/CJGE201602011
Jiang W, Liu Y (2018) Determination of neutral plane depth and pile-soil stress ratio of the rigid pile composite foundation. Rock and Soil Mechanics 39:4554–4560. https://doi.org/10.16285/j.rsm.2017.0812
Zhang S, Zhao M, He L, Zhang L (2011) Calculation of Settlement of Composite Foundation with Rigid Piles under Flexible Ground. J Highway Transp Res Dev (English Ed) 5:15–21. https://doi.org/10.1061/JHTRCQ.0000058
Zhang H, Shi ML (2012) Mechanical Performance of Settlement-Reducing Pile Foundation with Cushion. AMR 368–373:2545–2549. https://doi.org/10.4028/www.scientific.net/AMR.368-373.2545
Chen RP, Chen YM, Han J, Xu ZZ (2008) A theoretical solution for pile-supported embankments on soft soils under one-dimensional compression. Can Geotech J 45:611–623. https://doi.org/10.1139/T08-003
Jiang Y, Yao K, Lim SM, et al (2022) Integrated Analytical Model for Characterizing Stress Distribution of Geosynthetic-Reinforced and Pile-Supported Embankments. Int J Geomech 22:04022233. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002584
Zhuang Y, Wang K (2017) Analytical Solution for Reinforced Piled Embankments on Elastoplastic Consolidated Soil. Int J Geomech 17:06017010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000926
Wu Y, Fu L, Wu W, et al (2018) Nonlinear Stress Analysis of Flexible Pile Composite Foundation by Energy Method. Advances in Materials Science and Engineering 2018:1–9. https://doi.org/10.1155/2018/8176398
Malekkhani MJ, Bazaz JB (2021) An Analytical Model to Study the Behavior of Non-connected Piled Rafts with Granular Cushion Subjected to Vertical Load. Int J Civ Eng 19:941–956. https://doi.org/10.1007/s40999-021-00611-1
Pham HV, Briançon L, Dias D, Racinais J (2019) Investigation of behavior of footings over rigid inclusion-reinforced soft soil: experimental and numerical approaches. Can Geotech J 56:1940–1952. https://doi.org/10.1139/cgj-2018-0495
Xu J, Xu X, Yao W (2022) New calculation method for the settlement of long-short-pile composite foundation based on virtual soil-pile model. Arab J Geosci 15:870. https://doi.org/10.1007/s12517-022-10028-2
Boussetta S, Bouassida M, Dinh A, et al (2012) Physical modeling of load transfer in reinforced soil by rigid inclusions. International Journal of Geotechnical Engineering 6:331–342. https://doi.org/10.3328/IJGE.2012.06.03.331-341
Garcia JAB, Rodríguez Rebolledo JF, dos Santos Mützenberg DV, et al (2021) Experimental Investigation of a Load-Transfer Material for Foundations Reinforced by Rigid Inclusions. J Geotech Geoenviron Eng 147:04021110. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002649
Rui R, Han J, Ye Y, et al (2020) Load Transfer Mechanisms of Granular Cushion between Column Foundation and Rigid Raft. Int J Geomech 20:04019139. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001539
Wu D, Luo C, Gao Z, et al (2022) Effect of Different Reinforced Load Transfer Platforms on Geosynthetic-Reinforced Pile-Supported Embankment: Centrifuge Model Test. KSCE J Civ Eng 26:630–649. https://doi.org/10.1007/s12205-021-0623-7
Boussetta S, Bouassida M, Zouabi M (2016) Assessment of observed behavior of soil reinforced by rigid inclusions. Innov Infrastruct Solut 1:27. https://doi.org/10.1007/s41062-016-0027-6
Ghosh B, Fatahi B, Khabbaz H (2017) Analytical Solution to Analyze LTP on Column-Improved Soft Soil Considering Soil Nonlinearity. Int J Geomech 17:04016082. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000751
Chevalier B, Villard P, Combe G (2011) Investigation of Load-Transfer Mechanisms in Geotechnical Earth Structures with Thin Fill Platforms Reinforced by Rigid Inclusions. Int J Geomech 11:239–250. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000083
National standard of the people’s republic of China (JGJ 79—2012) (2012) Technical code for ground treatment of buildings. China Architecture & Building Press, Beijing, China
Briançon L, Dias D, Simon C (2015) Monitoring and numerical investigation of a rigid inclusions–reinforced industrial building. Can Geotech J 52:1592–1604. https://doi.org/10.1139/cgj-2014-0262
Bohn C (2015) Serviceability and safety in the design of rigid inclusions and combined pile-raft foundations. PhD Dissertation, Civil Engineering, Université Paris-Est
IREX (Institute for Applied Research and Experimentation in Civil Engineering) (2012) ASIRI national project: Recommendations for the design, construction and control of rigid inclusion ground improvements. Presses des Ponts, Paris
Zhu X (2017) Analysis of the Load Sharing Behaviour and Cushion Failure Mode for a Disconnected Piled Raft. Advances in Materials Science and Engineering 2017:1–13. https://doi.org/10.1155/2017/3856864
Liang F, Chen L-Z, Li J (2005) An approximate approach for the analysis of composite foundation with hybrid piles. Chinese Journal of Geotechnical Engineering 27:459–465
Randolph MF, Wroth CP (1979) An analysis of the vertical deformation of pile groups. Géotechnique 29:423–439. https://doi.org/10.1680/geot.1979.29.4.423
Korff M, Mair RJ, Van Tol FAF (2016) Pile-Soil Interaction and Settlement Effects Induced by Deep Excavations. J Geotech Geoenviron Eng 142:04016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434
Luo Q, Lu Q (2018) Settlement calculation of rigid pile composite foundation considering pile-soil relative slip under embankment load. china J Highw Transp 31:20–30
Randolph MF, Worth CP (1978) Analysis of deformation of vertically load piles. Journal of Geotechnical Engineering Division 104:1465–1488
Zhang Q, Li L, Chen Y (2014) Analysis of compression pile response using a softening model and hyperbolic model of skin friction and a bilinear model of end resistance. Journal of Engineering Mechanics 140:102–111. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000640
Chou Y-C, Hsiung Y-M (2009) A normalized equation of axially loaded piles in elasto-plastic soil. Journal of GeoEngineering 4:1–7
Zhang Q, Zhang Z (2012) A simplified nonlinear approach for single pile settlement analysis. Can Geotech J 49:1256–1266. https://doi.org/10.1139/t11-110
Sun X (2010) Effect of Foundation Rigidity and Cushion Thickness on Rigid Pile Composite Foundation Bearing Capacity. PhD Dissertation, China Academy of Building Research
Ateş B, Şadoglu E (2022) Experimental and Numerical Investigation for Vertical Stress Increments of Model Piled Raft Foundation in Sandy Soil. Iran J Sci Technol Trans Civ Eng 46:309–326. https://doi.org/10.1007/s40996-021-00618-7
Ссылки
- На текущий момент ссылки отсутствуют.