Открытый доступ Открытый доступ  Ограниченный доступ Платный доступ или доступ для подписчиков

УПРУГОПЛАСТИЧЕСКИЙ ПРОГНОЗ ОСАДОК ПЛИТНОГО ФУНДАМЕНТА, УСИЛЕННОГО СВАЯМИ РАЗНОЙ ДЛИНЫ С ПРОМЕЖУТОЧНОЙ ГРУНТОВОЙ ПОДУШКОЙ Elasto – plastic analysis for load-settlement prediction of vertically loaded cushioned piled-rafts with unequal pile lengths

Yuancheng Guo, Jun Zhao, Mingyu Li, Yunlong Liu, Siqiang Hou, Bantayehu Uba Uge

Аннотация


Предложена методика оценки осадки при нагружении плитного фундамента, усиленного сваями разной длины, с компенсационным слоем грунта (грунтовой подушкой) непосредственно под плитой, учитывающая взаимодействие элементов фундаментной конструкции. Для описания относительного смещения грунта вокруг сваи во взаимосвязи с сопротивлением по боковой поверхности и/или под подошвой
сваи с учетом негативного трения на контакте «свая–грунт» рассматривается упругопластическое поведение. Грунтовая подушка моделируется в рамках Винклеровского подхода. Прогноз по предложенному методу показал хорошее соответствие результатам, полученным при крупномасштабном лабораторном
моделировании для свайно-плитного фундамента размерами 2×2 м с длинными и короткими сваями.


Полный текст:

PDF (English)

Литература


Burland JB, Broms BB, De Mello VFB (1977) Behavior of foundation and structures. In: 9th Int. Conf. Soil Mechanics and Foundation Engineering. Tokyo, pp 495–546

Basile F (2015) Non-linear analysis of vertically loaded piled rafts. Computers and Geotechnics 63:73–82. https://doi.org/10.1016/j.compgeo.2014.08.011

Deb P, Pal SK (2019) Analysis of Load Sharing Response and Prediction of Interaction Behaviour in Piled Raft Foundation. Arab J Sci Eng 44:8527–8543. https://doi.org/10.1007/s13369-019-03936-1

El-Garhy BM (2022) A Simplified Method for the Nonlinear Analysis of Composite Piled Raft Foundation. Geotech Geol Eng 40:4357–4375. https://doi.org/10.1007/s10706-022-02159-w

Jeong S, Cho J (2014) Proposed nonlinear 3-D analytical method for piled raft foundations. Computers and Geotechnics 59:112–126. https://doi.org/10.1016/j.compgeo.2014.02.009

Nasrollahi SM, Seyedi Hosseininia E (2019) A simplified solution for piled-raft foundation analysis by using the two-phase approach. Comptes Rendus Mécanique 347:716–733. https://doi.org/10.1016/j.crme.2019.10.002

Halder P, Manna B (2022) Load transfer mechanism for connected and disconnected piled raft: a comparative study. Acta Geotech 17:3033–3045. https://doi.org/10.1007/s11440-021-01409-0

Poulos HG (2016) Tall building foundations: design methods and applications. Innov Infrastruct Solut 1:10. https://doi.org/10.1007/s41062-016-0010-2

Cui W, Zheng X (2018) Analysis of the Response of Pile Groups Considering Pile–Cap–Soil Interaction in Layered Soil. Soil Mech Found Eng 55:87–95. https://doi.org/10.1007/s11204-018-9508-2

Poulos HG, Davis EH (1980) Pile Foundation Analysis and Design. Robert E. Krieger Company, Malabar, Florida

Mylonakis G, Gazetas G (1998) Settlement and additional internal forces of grouped piles in layered soil. Géotechnique 48:55–72. https://doi.org/10.1680/geot.1998.48.1.55

Sales MM, Curado T da S (2018) Interaction Factor Between Piles: Limits on Using the Conventional Elastic Approach in Pile Group Analysis. SR 41:049–060. https://doi.org/10.28927/SR.411049

Zhang Q, Zhang Z (2011) Study on interaction between dissimilar piles in layered soils. Int J Numer Anal Meth Geomech 35:67–81. https://doi.org/10.1002/nag.893

Liu H, Liu Q (2021) An analytical model for the interaction between two dissimilar piles in a finite soil layer. Int J Numer Anal Methods Geomech 45:950–964. https://doi.org/10.1002/nag.3187

Yang Y, Zhang J (2022) Analysis of Features of Long and Short Pile Composite Foundation in High-Rise Buildings. Soil Mech Found Eng 59:92–101. https://doi.org/10.1007/s11204-022-09788-6

Zhang Q-Q, Liu S-W, Feng R-F, et al (2020) Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system. Front Struct Civ Eng 14:961–982. https://doi.org/10.1007/s11709-020-0632-5

Xie Y, Chi S (2020) Optimization Method of Reducing the Differential Settlements of Piled Raft Foundations Based on Pile-to-Pile Interaction Theory. Advances in Civil Engineering 2020:1–14. https://doi.org/10.1155/2020/1521876

Guo Y, Lv C, Hou S, Liu Y (2021) Experimental Study on the Pile-Soil Synergistic Mechanism of Composite Foundation with Rigid Long and Short Piles. Mathematical Problems in Engineering 2021:1–15. https://doi.org/10.1155/2021/6657116

Ma T, Zhu Y, Yang X (2020) Calculation of Bearing Capacity and Deformation of Composite Pile Foundation with Long and Short Piles in Loess Areas. Advances in Civil Engineering 2020:1–10. https://doi.org/10.1155/2020/8829779

Miao L, Wang F, Lv W (2018) A Simplified Calculation Method for Stress Concentration Ratio of Composite Foundation with Rigid Piles. KSCE Journal of Civil Engineering. https://doi.org/10.1007/s12205-018-1558-5

Yan S, Lang R, Sun L, et al (2017) Calculation of pile-soil stress ratio in composite foundation with rigid pile-net based on plate theory. Chinese Journal of Rock Mechanics and Engineering 36:2051–2060

Huang M, Jiu Y, Jiang J, Li B (2017) Nonlinear analysis of flexible piled raft foundations subjected to vertical loads in layered soils. Soils and Foundations 57:632–644. https://doi.org/10.1016/j.sandf.2017.04.004

Luo Q, Wei M, Lu Q, Wang T (2021) Simplified analytical solution for stress concentration ratio of piled embankments incorporating pile–soil interaction. Rail Eng Science 29:199–210. https://doi.org/10.1007/s40534-021-00236-z

Zhao M, Chen Q, Zhang L (2011) Calculation of Pile-soil Stress Ratio of Rigid Pile Composite Foundation with Consideration of Upward Penetration of Piles. J Highway Transp Res Dev (English Ed) 5:1–6. https://doi.org/10.1061/JHTRCQ.0000033

Chen J, Zheng J, Chen B, Lu Y (2008) Analysis of working behavior of rigid pile composite ground considering influence of negative skin friction. Rock and Soil Mechanics 29:1955-1959.

Wu C, Guo W, Li Y, Tie R (2016) Calculation of neutral surface depth and pile-soil stress ratio of rigid pile composite foundation considering influence of negative friction. Chinese Journal of Geotechnical Engineering 38:278–287. https://doi.org/10.11779/CJGE201602011

Jiang W, Liu Y (2018) Determination of neutral plane depth and pile-soil stress ratio of the rigid pile composite foundation. Rock and Soil Mechanics 39:4554–4560. https://doi.org/10.16285/j.rsm.2017.0812

Zhang S, Zhao M, He L, Zhang L (2011) Calculation of Settlement of Composite Foundation with Rigid Piles under Flexible Ground. J Highway Transp Res Dev (English Ed) 5:15–21. https://doi.org/10.1061/JHTRCQ.0000058

Zhang H, Shi ML (2012) Mechanical Performance of Settlement-Reducing Pile Foundation with Cushion. AMR 368–373:2545–2549. https://doi.org/10.4028/www.scientific.net/AMR.368-373.2545

Chen RP, Chen YM, Han J, Xu ZZ (2008) A theoretical solution for pile-supported embankments on soft soils under one-dimensional compression. Can Geotech J 45:611–623. https://doi.org/10.1139/T08-003

Jiang Y, Yao K, Lim SM, et al (2022) Integrated Analytical Model for Characterizing Stress Distribution of Geosynthetic-Reinforced and Pile-Supported Embankments. Int J Geomech 22:04022233. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002584

Zhuang Y, Wang K (2017) Analytical Solution for Reinforced Piled Embankments on Elastoplastic Consolidated Soil. Int J Geomech 17:06017010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000926

Wu Y, Fu L, Wu W, et al (2018) Nonlinear Stress Analysis of Flexible Pile Composite Foundation by Energy Method. Advances in Materials Science and Engineering 2018:1–9. https://doi.org/10.1155/2018/8176398

Malekkhani MJ, Bazaz JB (2021) An Analytical Model to Study the Behavior of Non-connected Piled Rafts with Granular Cushion Subjected to Vertical Load. Int J Civ Eng 19:941–956. https://doi.org/10.1007/s40999-021-00611-1

Pham HV, Briançon L, Dias D, Racinais J (2019) Investigation of behavior of footings over rigid inclusion-reinforced soft soil: experimental and numerical approaches. Can Geotech J 56:1940–1952. https://doi.org/10.1139/cgj-2018-0495

Xu J, Xu X, Yao W (2022) New calculation method for the settlement of long-short-pile composite foundation based on virtual soil-pile model. Arab J Geosci 15:870. https://doi.org/10.1007/s12517-022-10028-2

Boussetta S, Bouassida M, Dinh A, et al (2012) Physical modeling of load transfer in reinforced soil by rigid inclusions. International Journal of Geotechnical Engineering 6:331–342. https://doi.org/10.3328/IJGE.2012.06.03.331-341

Garcia JAB, Rodríguez Rebolledo JF, dos Santos Mützenberg DV, et al (2021) Experimental Investigation of a Load-Transfer Material for Foundations Reinforced by Rigid Inclusions. J Geotech Geoenviron Eng 147:04021110. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002649

Rui R, Han J, Ye Y, et al (2020) Load Transfer Mechanisms of Granular Cushion between Column Foundation and Rigid Raft. Int J Geomech 20:04019139. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001539

Wu D, Luo C, Gao Z, et al (2022) Effect of Different Reinforced Load Transfer Platforms on Geosynthetic-Reinforced Pile-Supported Embankment: Centrifuge Model Test. KSCE J Civ Eng 26:630–649. https://doi.org/10.1007/s12205-021-0623-7

Boussetta S, Bouassida M, Zouabi M (2016) Assessment of observed behavior of soil reinforced by rigid inclusions. Innov Infrastruct Solut 1:27. https://doi.org/10.1007/s41062-016-0027-6

Ghosh B, Fatahi B, Khabbaz H (2017) Analytical Solution to Analyze LTP on Column-Improved Soft Soil Considering Soil Nonlinearity. Int J Geomech 17:04016082. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000751

Chevalier B, Villard P, Combe G (2011) Investigation of Load-Transfer Mechanisms in Geotechnical Earth Structures with Thin Fill Platforms Reinforced by Rigid Inclusions. Int J Geomech 11:239–250. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000083

National standard of the people’s republic of China (JGJ 79—2012) (2012) Technical code for ground treatment of buildings. China Architecture & Building Press, Beijing, China

Briançon L, Dias D, Simon C (2015) Monitoring and numerical investigation of a rigid inclusions–reinforced industrial building. Can Geotech J 52:1592–1604. https://doi.org/10.1139/cgj-2014-0262

Bohn C (2015) Serviceability and safety in the design of rigid inclusions and combined pile-raft foundations. PhD Dissertation, Civil Engineering, Université Paris-Est

IREX (Institute for Applied Research and Experimentation in Civil Engineering) (2012) ASIRI national project: Recommendations for the design, construction and control of rigid inclusion ground improvements. Presses des Ponts, Paris

Zhu X (2017) Analysis of the Load Sharing Behaviour and Cushion Failure Mode for a Disconnected Piled Raft. Advances in Materials Science and Engineering 2017:1–13. https://doi.org/10.1155/2017/3856864

Liang F, Chen L-Z, Li J (2005) An approximate approach for the analysis of composite foundation with hybrid piles. Chinese Journal of Geotechnical Engineering 27:459–465

Randolph MF, Wroth CP (1979) An analysis of the vertical deformation of pile groups. Géotechnique 29:423–439. https://doi.org/10.1680/geot.1979.29.4.423

Korff M, Mair RJ, Van Tol FAF (2016) Pile-Soil Interaction and Settlement Effects Induced by Deep Excavations. J Geotech Geoenviron Eng 142:04016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434

Luo Q, Lu Q (2018) Settlement calculation of rigid pile composite foundation considering pile-soil relative slip under embankment load. china J Highw Transp 31:20–30

Randolph MF, Worth CP (1978) Analysis of deformation of vertically load piles. Journal of Geotechnical Engineering Division 104:1465–1488

Zhang Q, Li L, Chen Y (2014) Analysis of compression pile response using a softening model and hyperbolic model of skin friction and a bilinear model of end resistance. Journal of Engineering Mechanics 140:102–111. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000640

Chou Y-C, Hsiung Y-M (2009) A normalized equation of axially loaded piles in elasto-plastic soil. Journal of GeoEngineering 4:1–7

Zhang Q, Zhang Z (2012) A simplified nonlinear approach for single pile settlement analysis. Can Geotech J 49:1256–1266. https://doi.org/10.1139/t11-110

Sun X (2010) Effect of Foundation Rigidity and Cushion Thickness on Rigid Pile Composite Foundation Bearing Capacity. PhD Dissertation, China Academy of Building Research

Ateş B, Şadoglu E (2022) Experimental and Numerical Investigation for Vertical Stress Increments of Model Piled Raft Foundation in Sandy Soil. Iran J Sci Technol Trans Civ Eng 46:309–326. https://doi.org/10.1007/s40996-021-00618-7


Ссылки

  • На текущий момент ссылки отсутствуют.