Открытый доступ Открытый доступ  Ограниченный доступ Платный доступ или доступ для подписчиков

ДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ МАССИВА ПЕСЧАНЫХ ГРУНТОВ С УЧЁТОМ ИЗМЕНЕНИЯ ПОТЕНЦИАЛА РАЗЖИЖЕНИЯ ПО ГЛУБИНЕ

Армен Завенович Тер-Мартиросян, Евгений Станиславович Соболев, Георгий Олегович Анжело, Александр Николаевич Шебуняев

Аннотация


Анализируется метод прогнозирования напряженно-деформированного состояния грунтовых оснований при динамическом воздействии на основе потенциала разжижения. Проведены лабораторные исследования песчаных водонасыщенных грунтов в условиях динамического трехосного сжатия. Показано, что использование «среднего» потенциала разжижения для слоя вне зависимости от его мощности
приводит к необоснованно оптимистической оценке устойчивости массива грунта.


Полный текст:

PDF

Литература


Ding Z., Zhuang J., Wei X., Kong B., Ma S. Experimental study on critical dynamic stress of coarse-grained soil in railway subgrade // Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, Vol. 39, 2020. pp. 3178-3187, DOI: 10.13722/j.cnki.jrme.2019.0976.

Faizan A.A., Kırtel O. Non-linear soil-structure interaction analysis of railway bridge subjected to earthquake ground motions considering different types of soil // Arabian Journal of Geosciences, Vol. 14, No. 6, 2021. pp. Art. No. 509, DOI: 10.1007/s12517-021-06834-9.

Seed H.B., Idriss I.M. Simplified procedure for evaluating soil liquefaction potential // Journal of Soil Mechanics & Foundations Div, Vol. 97, No. 9, 1971. pp. 1249-1273.

Seed H.B., Peackock W.H. Test procedures for measuring soil liquefaction characteristics // Journal of SoilMechanics & Foundations Div, 1971. pp. 1099-1119.

Iwasaki T., Tokida K.I., Tatsuoka F., Watanabe S., Yasuda S., Sato H. Microzonation for soil liquefaction potential using simplified methods // Proceedings of the 3rd International Conference on Microzonation. Seattle, Wash, USA. 1982. pp. 1310-1330.

Robertson P.K., Wride C.E. Evaluating cyclic liquefaction potential using the cone penetration test // Canadian Geotechnical Journal, Vol. 35, 1998. pp. 442-459.

Ateş A., Keskin I., Totic E., Yeşil B. Investigation of Soil Liquefaction Potential around Efteni Lake in Duzce Turkey: Using Empirical Relationships between Shear Wave Velocity and SPT Blow Count (N) // Advances in Materials Science and Engineering, Vol. 2014, Jun 2014. pp. 1-15, https://doi.org/10.1155/2014/290858.

Du G., Gao C., Liu S., Guo Q., Luo T. Evaluation Method for the Liquefaction Potential Using the Standard Penetration Test Value Based on the CPTU Soil Behavior Type Index // Advances in Civil Engineering, Vol. 2019, No. 10, Mar 2019. pp. 1-8, https://doi.org/10.1155/2019/5612857.

Hatanaka M., Uchida A., Ohara J. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu earthquake // Soils and Foundations, Vol. 37, 1997. pp. 107-115.

Tokimatsu K., Yamazaki T., Yoshimi Y. Soil liquefaction evaluations by elastic shear moduli // Soils and Foundations, Vol. 26, 1986. pp. 25-35.

Phong N.V., Thang L.T. Research on liquefaction resistance of fine sand distributing in Hanoi by density // International Conference on Geology and Geo-resources (ESASGD 2016). Hanoi, Viet Nam. 2016. pp. 174–178.

Andrus R.D., Stokoe K.H. Liquefaction resistance of soils from shear-wave velocity // Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, 2000. pp. 1015-1025.

Satyam N. Review on liquefaction hazard assessment // In: Advances in Geotechnical Earthquake Engineering - Soil Liquefaction and Seismic Safety of Dams and Monuments. InTech, 2012. pp. 63-82.

Ansari A., Zahoor F., Rao K.S. Liquefaction hazard assessment in a seismically active region of Himalayas using geotechnical and geophysical investigations: a case study of the Jammu Region // Bulletin of Engineering Geology and the Environment, Vol. 81, No. 9, Aug 2022. pp. Art. No. 349, https://doi.org/10.1007/s10064-022-02852-3.

Azuno K., Ishii T., Kwon Y., Kamura A., Kazama M. An Attempt to Evaluate In Situ Dynamic Soil Property by Cyclic Loading Pressuremeter Test // In: Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (PBD-IV 2022). Beijing: Springer, Cham, 2022. pp. https://doi.org/10.1007/978-3-031-11898-2_126.

Sentsova E.A., Nikitin M.S., Voznesensky E.A. Sandy soils dynamic strength parameters according to triaxial tests // Engineering Geology World, Vol. XIV, No. 2, 2019. pp. 24-33, https://doi.org/10.25296/1993-5056-2019-14-2-24-33.

Mousavi S., Ghayoomi M. Seismic Compression of Unsaturated Silty Sands: A Strain-Based Approach // Journal of Geotechnical and Geoenvironmental Engineering, Vol. 147, No. 5, 2021. pp. Art. No. 04021023, DOI: 10.1061/(ASCE)GT.1943-5606.0002507.

Rong W., McCartney J.S. Drained Seismic Compression of Unsaturated Sand // Journal of Geotechnical and Geoenvironmental Engineering, Vol. 146, No. 5, 2020. pp. Art. No. 04020029, DOI: 10.1061/(ASCE)GT.1943-606.0002251.

Hazirbaba K., Omarow M. Strain-based assessment ofliquefaction and seismic settlement of saturated san // Cogent Engineering, Vol. 6, No. 1, Feb 2019. pp. Art. No. 1573788, DOI: 10.1080/23311916.2019.1573788.

Hong-Wu, Zhi-Ye, Liu H.B., Zhang Y.T. Numerical Study on Seismic Behavior of Shield Tunnel Crossing Saturated Sand Strata with Different Densities // Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering. Beijing, China. Sep 2022. pp. 2362–2370, https://doi.org/10.1007/978-3-031-11898-2_221.

Kumar S., Murali Krishna A., Dey A. Dynamic soil properties of Brahmaputra sand using Cyclic Triaxial tests // North-East Students Geo-Congress on Advances in Geotechnical Engineering (NESGC 2014). Guwahati, India. 2014. pp. 1-6.

Ahmad M., Tang X., Hadzima-Nyarko M., Ahmad F., Nawaz A., Farooq A. Elucidation of Seismic Soil Liquefaction Significant Factors // In: Earthquakes - From Tectonics to Buildings. London: IntechOpen, 2021. pp. http://dx.doi.org/10.5772/intechopen.97278.

Voznesensky E.A., Kushnareva E.S. Seismic liquefaction of soils: engineering evaluation and classification // Engineering Geology World, Vol. 2, 2012. pp. 11-23.

Mir Mohammad Hesseini M.S., Pashang Pisheh Y., Shakiba Nia K., Ganjian N. Effect of Density on Critical Depth of Liquefaction in a Soil Deposit Containing Double Loose Sand Lenses // International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, California. 2010. Vol. 14. P. Paper No. 4.55a.

Nepal D.B., Deng J., Chen J., Pokhrel P. Factors Influencing Sand Re-liquefaction in Shaking Table Test // Nepal Journal of Civil Engineering, Vol. 1, No. 1, Jan 2021. pp. 51–59. https://doi.org/10.3126/njce.v1i1.43373.

Ter-Martirosyan A.Z., Sobolev E.S. Dynamic problems of scientific support construction // IOP Conference Series: Materials Science and Engineering, Vol. 869, 2020. pp. Art. No. 072011, DOI: 10.1088/1757-899X/869/7/072011.

Munirwansyah, Munirwan R.P., Irhami. Liquefaction analysis on three-dimensional sand shading relief layer contours due to earthquake acceleration // 11TH ANNUAL INTERNATIONAL CONFERENCE (AIC) 2021: On Sciences and Engineering. Banda Aceh, Indonesia. 2023. Vol. 2613(1). pp. Art. No. 030005, https://doi.org/10.1063/5.0119738.

Fu H., Yuan X. Study on In-situ Liquefaction Test of Reconstituted Saturated Sand. Yingyong Jichu yu Gongcheng Kexue Xuebao // Journal of Basic Science and Engineering, Vol. 26, No. 2, Apr 2018. pp. 403-412, DOI: 10.16058/j.issn.1005-0930.2018.02.017.

Fu H., Yuan X. Dynamic Properties of Saturated Sand Based on the in situ Liquefaction Test // Journal of Earthquake Engineering, Vol. 25, No. 3, 2021. pp. 512-534, DOI: 10.1080/13632469.2018.1523072.

Ter-Martirosyan A.Z., Sobolev E.S. Analysis of the seismic stability of foundations according to laboratory soil tests // VII International Scientific Conference Integration, Partnership and Innovation in Construction Science and Education (IPICSE 2020). Tashkent, Uzbekistan. 2021. Vol. 1030. pp. Art. No. 012032, https://dx.doi.org/10.1088/1757-899X/1030/1/012032.

Sobolev E.S., Buslov A.S. Dynamic stability analysis and basic action for struggle with dynamic soil liquefaction // XXVII R-S-P Seminar, Theoretical Foundation of Civil Engineering (27RSP) (TFoCE 2018). Rostov-on-Don, Russia. 2018. Vol. 196. pp. Art. N. 03021, https://doi.org/10.1051/matecconf/201819603021.

Kundu A., Patra N.R., Bandyopadhyay S., Reddy G.R. Static and dynamic characterization and response analysis of soils from northern India // SN Applied Sciences, Vol. 3, No. 2, 2021. pp. Art. No. 205, DOI: 10.1007/s42452-021-04196-1.

Park S.S., Nong Z.Z., Lee D.E. Effect of vertical effective and initial static shear stresses on the liquefaction resistance of sands in cyclic direct simple shear tests // Soils and Foundations, Vol. 60, No. 6, Oct 2020. pp. https://doi.org/10.1016/j.sandf.2020.09.007.

Fontana D., Amoroso S., Minarelli L., Stefani M. Sand Liquefaction Induced By a Blast Test: New Insights On Source Layer and Grain-Size Segregation Mechanisms (Late Quaternary, Emilia, Italy) // Journal of Sedimentary Research, Vol. 89, No. 1, Jan 2019. pp. 13–27, https://doi.org/10.2110/jsr.2019.1.

Jamali H., Tolooiyan A. Effect of Sand Content on the Liquefaction Potential and Post-Earthquake Behaviour of Coode Island Silt // Geotechnical and Geological Engineering, Vol. 39, 0810 2020. pp. 549-563, https://doi.org/10.1007/s10706-020-01512-1.

Pre- and Post-Liquefaction Behaviors of Manufactured Sand Considering the Particle Shape and Stress History Effects // Journal of Marine Science and Engineering, Vol. 11, No. 4, Mar 2023. pp. Art. No. 739, DOI: 10.3390/jmse11040739.

Yao A., Tian T., Gong Y., Li H. Shaking Table Tests of Seismic Response of Multi-Segment Utility Tunnels in a Layered Liquefiable Site // Sustainability, Vol. 15, No. 7, Mar 2023. pp. Art. No. 6030, DOI: 10.3390/su15076030.

Ghani S., Kumari S. Liquefaction Susceptibility of High Seismic Region of Bihar considering Fine Content // In: Basics of Computational Geophysics. Elsevier, 2021. pp. 105-120, https://doi.org/10.1016/B978-0-12-820513-6.00012-6.

Ghani S., Kumari S. Insight into the Effect of Fine Content on Liquefaction Behavior of Soil // Geotechnical and Geological Engineering , Vol. 39, No. 4, Jan 2021. pp. 1-12, ttps://doi.org/10.1007/s10706-020-01491-3.

Marto A., Soon T.C. Short Review on Liquefaction Susceptibility // International Journal of Engineering Research and Applications, Vol. 2, No. 3, Nov 2011. pp. 2115-2119.

Green R.A., Bradshaw A.S., Baxter C.D.P. Accounting for Intrinsic Soil Properties and State Variables on Liquefaction Triggering // Journal of Geotechnical and Geoenvironmental Engineering, Vol. 148, No. 7, Jul 2022. pp. Art. No. 04022056, DOI: 10.1061/(ASCE)GT.1943-5606.0002823.


Ссылки

  • На текущий момент ссылки отсутствуют.