Открытый доступ Открытый доступ  Ограниченный доступ Платный доступ или доступ для подписчиков

УКРЕПЛЕНИЕ ПЕСКА НАНОЧАСТИЦАМИ ЛАПОНИТА ДЛЯ СНИЖЕНИЯ РИСКОВ РАЗЖИЖЕНИЯ (ОБЗОР) The application of nanoparticles to lessen the risks of liquefaction: an emerging technique for sand improvement - A review

Shumsun Nahar Siddique, Jian Deng, Eltayeb /user/register Mohamedelhassan

Аннотация


Рассматриваются методы снижения риска разжижения грунта во время подвижек земной
поверхности. Приведен обзор литературы по возможному увеличению устойчивости песка к разжижению с применением нанотехнологий, в том числе, с использованием наночастиц лапонита, обладающего подходящими реологическими свойствами. Рассмотрены результаты использования лапонита для улучшения свойств грунтов.


Полный текст:

PDF (English)

Литература


C.R. Yao, B. Wang, Z.Q. Liu, H. Fan, F.H. Sun and X.H. Chang, “Evaluation of liquefaction potential in saturated sand under different drainage boundary conditions-an energy approach”, J Mar. Sci. Eng. 7, 411 (2019).

P. De Alba, C. Chan and H. Seed, “Determination of soil liquefaction characteristics by large-scale laboratory tests (No. Report No. EERC75-14)”, Berkeley, CA (1975).

K. Seed, “Rankine Lecture: Liquefaction and flow failure during earthquakes”, Geotechnique 43, 351–415 (1993).

S. Poulos, G. Castro and J. France, “Liquefaction evaluation procedure”, J Geotech. Eng. 111, 772–92 (1985).

R. Verdugo and J. Gonzalez, “Liquefaction-induced ground damages during the 2010 Chile earthquake”, Soil Dyn. Earthq. Eng. 79, 280–95 (2015).

P. De Alba, H. Seed and C. Chan, “Sand liquefaction in large-scale simple shear tests”, J Soil Mech. Found. Div. ASCE 102, 909–927 (1976).

K. Lee and A. Albaisa, “Earthquake-induced settlements in saturated sands”, J Geotech. Engng. Div. ASCE 100, 387–406 (1974).

H. Seed, P. Martin and J. Lysmer, “Pore-water pressure changes during soil liquefaction”, J Geotech. Engng. Div. ASCE 102, 323–346 (1976).

R. Dobry, R. Ladd, F. Yokel, R. Chung and D. Powell, “Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method”, District of Columbia: U.S. Dept. of Commerce, National Bureau of Standards; National Technical Information Service, (1982).

R. Dobry, “Liquefaction of soils during earthquakes, National Research Council, Committee on Earthquake Engineering (Report No. CETS-EE-001)”, National Academy Press, Washington, DC, USA (1985).

C. Hsu and M. Vucetic, “Volumetric threshold shear strain for cyclic settlement”, J Geotech. Geoenviron. Eng. ASCE 130, 58–70 (2004).

K. Hazirbab and E. Rathje, “Pore pressure generation of silty sands due to induced cyclic shear strains”, J Geotech. Geoenviron. Engng. ASCE 135, 1892–1905 (2009).

A. Alarcon-Guzman, G. Leonards and J Chameau, “Undrained monotonic and cyclic strength of sands”, J Geotech. Eng. 114, 1089–109 (1988).

G. Castro and S. Poulos, “Factors affecting liquefaction and cyclic mobility”, J Geotech. Eng. Div. 103, 501–516 (1977).

R. Verdugo and K. Ishihara, “The steady state of sandy soils”, Soils Found. 36, 81–91 (1996).

G. Clough, J. Iwabuchi, N. Rad and T. Kuppusamy, “Influence of cementation on liquefaction of sands”, J Geotech. Eng. 115, 1102–1117 (1989).

J. Troncoso and R. Verdugo, “Silt content and dynamic behavior of tailings sands”, Idriss IM, editor. XI. Presented at the Int. Conf. on Soil Mechanics Found. Engineering., San Francisco: Balkema, pp. 1311–1314 (1985).

Y. Vaid and S. Sivathayalan, “Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests”, Can. Geotech. J 2, 281–289 (1996).

M. Vucetic and R. Dobry, “Effect of soil plasticity on cyclic response”, J Geotech. Eng. 117, 89–107 (1991).

J. Carraro, P. Bandini and R. Salgado, “Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance”, J Geotech. Geoenviron. Engng. 129, 965–976 (2003).

N. Chang, S. Yeh and L. Kaufman, “Liquefaction potential of clean and silty sands”, In Proceedings of the 3rd International Earthquake Microzonation Conference. Seattle, WA, USA, pp. 1017–1032 (1982).

W. Finn, R. Ledbetter and G. Wu, “Liquefaction in silty soils: design and analysis”, Ground failures under seismic conditions (eds S Prakash and P Dakoulas). Geotech. Spec. Publ. NY USA ASCE 44, 51–76 (1994).

J. Koester, “The influence of fine type and content on cyclic strength”, Ground failures under seismic conditions (eds S Prakash and P Dakoulas). Geotech. Spec. Publ. NY USA ASCE 44, 17–33 (1994).

K. Law and Y Ling, “Liquefaction of granular soils with non-cohesive and cohesive fines”, Presented at the Proceedings of the 10th world conference on earthquake engineering, Rotterdam, the Netherlands, pp. 1491–1496 (1992).

C. Polito and J Martin, “A reconciliation of the effects of non-plastic fine on the liquefaction resistance of sands reported in the literature”, Earthq. Spectra 19, 635–651 (2003).

S. Thevanayagam, T. Shenthan, S. Mohan and J. Liang, “Undrained fragility of clean sands, silty sands, and sandy silts”, J Geotech. Geoenviron. Engng. 128, 849–859 (2002).

V. Vaid, “Liquefaction of silty soils”, In Ground failures under seismic conditions (eds S Prakash and P Dakoulas). Geotech. Spec. Publ. NY USA ASCE 44, 1–16 (1994).

K. Ishihara, “Soil behaviour in earthquake Geotechnics”, Oxford Science Publication, Clarendon Press, Oxford, UK (1996).

K. Ishihara and J. Koseki, “Discussion of cyclic shear strength of fines-containing sands”, Presented at the Proceedings of the 12th international conference on soil mechanics and foundation engineering, Rio de Janeiro, Brazil, p. 101-106 (1989).

S. Saxena, K. Reddy and A. Avramidis, “Liquefaction resistance of artificially cemented sand”, J Geotech. Eng. 114, 1395–413 (1988).

K. Tokimatsu and Y. Yoshimi, “Criteria of soil liquefaction with SPT and fines content”, Presented at the 8th World conference on earthquake engineering., San Francisco, CA: Prentice Hall (1984).

G. Wang and J. Kuwano, “Modeling of strain dependency of shear modulus and damping of clayey sand”, Soil Dyn. Earthq. Eng. 18, 463–71 (1999).

V. Georgiannou, D. Hight and J. Burland, “Behaviour of clayey sands under undrained cyclic triaxial loading”, Geotechnique 41, 383–393 (1991).

J. Yamamuro and P. Lade, “Steady-state concepts and static liquefaction of silty sands,” J Geotech. Geoenviron. Engng. ASCE 124, 868–877 (1998).

T. Murthy, D. Loukidis, J. Carraro, M. Prezzi and R. Salgado, “Undrained monotonic response of clean and silty sands”, Geotechnique 57, 273–288 (2007).

D. Bobei, S. Lo, D. Wanatowski, C. Gnanendran and M. Rahman, “Modified state parameter for characterizing static liquefaction of sand and fines”, Can. Geotech. J 46, 281–295 (2009).

C. Polito, “The effects of non-plastic and plastic fines on the liquefaction of sandy soils”, (Ph.D. thesis). Virginia Polytechnic Institute and State University, Blacksburg, VA, USA (1999).

J. Bray, M. Cubrinovski, J. Zupan and M. Taylor, “Liquefaction Effects on Buildings in the Central Business District of Christchurch”, Earthq. Spectra 30, 85–109 (2004).

J. Bray and J. Frost, “Geo-engineering Reconnaissance of the 2010 Maule, Chile, Earthquake”, (a Report of the NSF- Sponsored GEER Association Team, primary authors: Arduino et al.) (2010).

M. Cubrinovski, J. Bray, M. Taylor, S. Giorgini, B. Bradley, L. “Wotherspoon and J. Zupan, Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake”, Seism. Res. Lett. 82, 893–904 (2011).

J. Bird and J. Bommer, “Earthquake losses due to ground failure”, Eng. Geol. 75, 147–179 (2004).

A. Krishna, “Mitigation of liquefaction hazard using granular piles”, J Geotech. Earthq. Eng. 2, 44–66 (2011).

A. Porbaha, K. Zen and M. Kobayashi, “Deep mixing technology for liquefaction mitigation”, J Infrastruct. Syst. 5, 21–34 (1999).

T. Shenthan, R. Nashed, S. Thevanayagam and G. Martin, “Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction”, Earthq. Eng. Vib. 3, 39–50 (2004).

S. Yasrobi and M. Biglari, “The use of dynamic compaction in liquefaction hazards mitigation at reclaimed lands in Assalouyeh petro-chemical complex—Iran”, Soft Soil Eng. 587–593 (2007).

P. Gallagher, A. Pamuk and T. Abdoun, “Stabilization of liquefiable soils using colloidal silica grout”, J Mater. Civ. Eng. 19, 33–40 (2007).

E. Vik, L. Sverdrup, L. Kelley, R. Storhaug, A. Beitnes, K. Boge, G. Grepstad and V. Tveiten, “Experiences from environmental risk management of chemical grouting agents used during construction of the romeriksporten tunnel”, Tunn. Undergr. Space Technol. 15,4, 369–378 (2000).

Y. Huang and Z. Wen, “Recent developments of soil improvement methods for seismic liquefaction mitigation”, Nat. Hazards 76, 927–1938 (2015).

W. Cao, “Nanostructures and nanomaterials-synthesis, properties and applications”, Imperial College Press, London (2004).

National Research Council, 2006. “Geological and geotechnical engineering in the new Millennium: opportunities for research and technological innovation”, National Academies Press, Washington (2006).

R. Yonekura and M. Kaga, “Current chemical grout engineering in Japan, Proc., Grouting”, Soil Improvement and Geosynthetics, ASCE, New York (1992).

P. Persoff, J. Apps, G. Moridis and J. Whang, “Effect of dilution and contaminants on sand grouted with colloidal silica”, J Geotechn. Geoenviron. Eng. 125, 461–469 (1999). https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(461)

P. Gallagher, “Passive site remediation for mitigation of liquefaction risk”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Virginia (2000).

C. El Mohtar, A. Bobet, M. Santagata, V. Drnevich and C Johnston, “Liquefaction mitigation using bentonite suspensions”, ASCE J Geotech. Geoenviron. Engng. 139, 1369–1380 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000865

C. El Mohtar, A. Bobet, M. Santagata, V. Drnevich and C. Johnston, “Cyclic response of sand with thixotropic pore fluid”, Geotechnical earthquake eng. and soil dyn. IV (eds D. Zeng, M. T. Manzari and D. R. Hiltunen). Geotechnical Special Publication 181 (CD-ROM). Reston, VA, USA: ASCE (2008).

D. Rugg, J. Yoon, H. Hwang and C. El Mohtar, “Undrained shearing properties of sand permeated with a bentonite suspension for static liquefaction mitigation”, Geofrontiers 2011 Adv. Geotech. Eng. Geotechnical Special Publication 211, 677686 (CD-ROM) (2011). https://doi.org/10.1061/41165(397)70

F. Ochoa-Cornejo, A. Bobet, C. Johnston, M. Santagata and J. Sinfield, “Cyclic behavior and pore pressure generation in sands with laponite, a super-plastic nanoparticles”, Soil Dyn. Earthq. Eng. 88, 265–279 (2016). https://doi.org/10.1016/j.soildyn.2016.06.008

Y. Huang and L. Wang, “Laboratory investigation of liquefaction mitigation in silty sand using nanoparticles”, Eng. Geol. 204, 23–32 (2016). https://doi.org/10.1016/j.enggeo.2016.01.015

T. Youd, I. Idriss, R. Andrus, I. Arango, G. Castro and J. Christian, “Liquefaction resistance of soils”, summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Gecotech. Geoenviron. Eng. 127, 817–33 (2001).

B.M. Das and G. Ramana, “Principles of Soil Dynamics”, 2nd edition, Stamford, Printed in the United States of America (2011).

M. Jefferies and K. Been, “Soil Liquefaction: A Critical State Approach”, 2nd edition, Taylor and Francis Group (2015).

P. Loma, M 6.9- Loma Prieta, “California Earthquake, Advanced National Seismic System” (Comprehensive Catalog, US Geological Survey) (1989).

A. Casagrande, “Liquefaction and cyclic deformation of sands: A critical review”, Harv. Soil Mech. Ser. No 88 (1976).

V. Florin and P. Ivanov, “Liquefaction of saturated sandy soils”, in: Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering (ICSMFE), Paris. pp. 107–111 (1976).

A. Casagrande, “On liquefaction phenomenon”, Geotechnique 21, 197–202 (1969).

A. Casagrande, “Characteristics of cohesionless soils affecting the stability of slopes and earth fills”, J. Boston Soc. Civ. Eng. (1936).

A. Schofield, “Dynamic and Earthquake Geotechnical Centrifuge Modelling”, in: Proceedings of the International Conference Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. pp. 1081–1100 (1981).

B. Muhunthan and A. Schofield, “Liquefaction and Dam failure” (This is a technical report of the University of Cambridge, CUED/D/SOILS/TR 310 (October 1999).), Proceedings of ASC Conference, GeoDenver 2000 (2000).

H. Tsuchida, “Prediction and Countermeans Against the Liquefaction in Sand Deposits”, Abstract of the Seminar in the Port and Harbor Research Institute, Yokohama, Japan, 3.1-3.33 (1970).

National Research Council, “Liquefaction of Soils During Earthquakes”, Report No. CETS-EE-001, Committee on Earthquake Engineering, National Academy Press, Washington, D.C. (1985).

H. Seed, K. Tokimatsu, L. Harder and R. Chung, “Influence of SPT Procedures in Soil Liquefaction Evaluations”, J. Geotech. Eng. 3, 1425–1445 (1985).

R. Feynman, “There’s plenty of room at the bottom”, Eng. Sci. 22, 22–36 (1960).

J. Tiwari, R. Tiwari and K. Kim, “Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices”, Prog. Mater. Sci. 57, 724–803 (2012).

E. Dreaden, A. Alkilany, X. Huang, C. Murphy and M. El-Sayed, “The golden age: gold nanoparticles for biomedicine”, Chem. Soc. Rev. 41, 2740–2779 (2012).

W. Shin, J. Cho, A. Kannan, Y. Lee and D. Kim, “Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries”, Sci. Rep. 6, 26332 (2016).

M. Cacciatore, D. Scheufele and E. Corley, “From enabling technology to applications: the evolution of risk perceptions about nanotechnology”, Public Underst. Sci. 20, 385–404 (2009).

G. Finch, H. Havel, M. Analoui, R. Barton, A. Diwan and M. Hennessy, “Nano-medicine drug development: a scientific symposium entitled Charting a Roadmap to Commercialization”, AAPS J 16, 698–704 (2014).

H. Hyung, J. Fortune, J. Hughes and J. Kim, “Natural organic matter stabilizes carbon nanotubes in the aqueous phase”, Environ. Sci. Technol. 41, 179–184 (2007).

K. Peng and S. Lee, “Silicon nanowire for photovoltaic solar energy conversion”, Adv. Mater. 23, 198–215 (2011).

F. Halicioglu, “The potential benefits of nanotechnology for innovative solutions in the construction sector”, Nanotechnol. Constr. 3 Springer Heidelb. 209–214 (2009).

M. Hanus and A. Harris, “Nanotechnology innovations for the construction industry”, Prog. Mater. Sci. 58, 1056–1102 (2013).

O. Ugwu, J. Arop, C. Nwoji and N. Osadebe, “Nanotechnology as a preventive engineering solution to highway infrastructure failure”, J Constr. Eng. Manag. 139, 987–993 (2013).

Z. Ge and Z. Gao, “Applications of nanotechnology and nano-materials in construction”, in: First International Conference on Construction in Developing Countries. pp. 235–240 (2008).

F. Pacheco-Torgal and S. Jalali, “Nanotechnology: advantages and drawbacks in the field of construction and building materials”, Constr. Build. Mater. 25, 582–590 (2011).

P. Balaguru and K. Chong, “Nanotechnology and concrete research opportunities”, In: Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives. Denver, pp. 15–28 (2006).

A. Qureshi, W. Kang, J. Davidson and Y. Gurbuz, “Review on carbon-derived, solid-state, micro and nano sensors for electro-chemical sensing applications”, Diam. Relat. Mater. 18, 1401–1420 (2009).

F. Sanchez and K. Sobolev, “Nanotechnology in concrete: a review”, Constr. Build Mater. 24, 2060–2071 (2010).

K. Chong, “Nano science and engineering in mechanics and materials”, Rev. Adv. Mater. 5, 110–116 (2003).

M. Berger, “Nanotechnology; the future is tiny”, Royal Society of Chemistry, 1st edition (2016).

S. Sathurusinghe, W. Herath, H. Subhashini and K Herath, “Stress concentrations in single walled carbon nanotube reinforced metal and polymer composites under uniaxial loading”, J Adv. Struct. Geotechn. Eng. 1, 58–60 (2012).

Y. Ando, “The preparation of carbon nanotubes”, Fuel Sci. Technol. 2, 173–80 (1994).

W. Maser, A. Benito and M. Martinez, “Production of carbon nanotubes the light approach”, Carbon 40, 1685–95 (2002).

C. Oncel and Y. Yurum, “Carbon nanotube synthesis via the catalytic CVD method, a review on the effect of reaction parameters, Fullerene, Nanotubes”, Carbon Nanostruct. 14, 17–37 (2006).

B. Fakhim, A. Hassani, A Rashidi and P. Ghodousi, “Predicting the impact of multiwalled carbon nanotubes on the cement hydration products and durability of cementitious matrix using artificial neural network modeling technique”, Sci. World J. ID 103713 (2013).

M. Arabania, A. Haghib and Y. Moradic, “Evaluation of mechanical properties improvement of clayey sand by using carbon nanotubes”, In: Proceedings of the 4th International Conference on Nanostructures (ICNS4). Kish Island, I.R. Iran, pp. 1567–1569 (2012).

M. Morsy, S. Alsayed and M. Aqel, “Hybrid effect of carbon nanotube and nano-clay on physicomechanical properties of cement mortar”, Constr. Build. Mater. 25, 145–149 (2011).

V. Dhawan, S. Dhoat, A. Williams, A. Dimarco, S. Pal, A. Forbes, A. Tobías, P. Martinez-Martin and K. Chaudhuri, “The range and nature of sleep dysfunction in untreated Parkinson’s disease (PD). A comparative controlled clinical study using the Parkinson’s disease sleep scale and selective polysomnography”, J Neurol. Sci. 25, 158–62 (2006).

S. Li, T. Anderson, M. Green, J. Maul and J. Canas-Carrell, “Polyaromatic hydrocarbons (PAHs) sorption behavior unaffected by the presence of multi-walled carbon nanotubes (MWNTs) in a natural soil system”, Environ. Sci. Process. Impacts 15, 1130–1136 (2013).

Z. Tong, M. Bischoff and L. Nies, “Impact of fullerene (C60) on a soil microbial community”, Env. Sci. Technol. 41, 2985–2991 (2007).

A. Johansen, A. Pedersen and K. Jensen, “Effects of C60 fullerene nanoparticles on soil bacteria and protozoans”, Env. Toxicol. Chem. 27, 1895–1903 (2008).

L. Spencer, G. Rix and P. Gallagher, “Colloidal silica gel and sand mixture dynamic properties”, Geotech. Earthq. Eng. Soil Dyn. Congr. IV PP1-10 ASCE Rest. VA USA (2008).

S. Chang, L. Liu and S. Asher, “Preparation and properties of tailored morphology, monodisperse colloidal silica cadmium sulfide nanocomposites”, J Am. Chem. Soc. 116, 6739–6744 (1994).

C. Chapa-Gonzalez, A. Pinon-Urbina and P. Garcia-Casillas, “Synthesis of controlled-size silica nanoparticles from sodium metasilicate and the effect of the addition of PEG in the size distribution”, Mater. Basel 11, 510 (2018).

G. Dietler, C. Aubert and D. Cannell, “Gelation of colloidal silica”, Phys. Rev. Lett. 57, 3117 (1986).

Y. Liu, C. Hsu and W. Wei, “Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica”, Polymer 44, 5159–5167 (2003).

J. Martin, J. Wilcoxon and D. Schaefer, “Fast aggregation of colloidal silica”, Phys. Rev. 41, 4379 (1990).

R. Yonekura and M. Miwa, “Fundamental properties of sodium silicate-based grout”, Presented at the Eleventh Southeast Asia Geotechnical Conference, Singapore, pp. 439–444 (1993).

P. Gallagher and J. Mitchell, “Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand”, Soil Dyn. Earthq. Eng. 22, 1017–1026 (2002).

P. Gallagher, A. Pamuk, A. Koch and T. Abdoun, “Centrifuge Modeling of Passive Site Remediation”, in: Proc., 7th United States National Conf. on Earthquake Engineering (7NCEE): Urban Earthquake Risk. Presented at the Earthquake Engineering Research Institute, Oakland, Calif. (2002).

P. Gallagher and A. Koch, “Model testing of passive site stabilization: A new grouting technique, Grouting and Ground Treatment”, in: Proc., 3rd Int. Conf., ASCE, Reston, Va. pp. 1478–1489 (2003).

V. Taboada, “Centrifuge modeling of earthquake-induced lateral spreading in sand using a laminar box”, (Ph.D. Dissertation), Rensselaer Polytechnic Institute, Troy, NY (1995).

H. Liao, C. Huang and B. Chao, “Liquefaction resistance of a colloid silica grouted sand, Grouting and ground treatment”, in: Proc. 3rd Int. Conf., ASCE. Reston, Va., pp. 1305–1313 (2003).

T. Kodaka, F. Oka, Y. Ohno, T. Takyu and N. Yamasaki, “Modelling of cyclic deformation and strength characteristics of silica treated sand”, in: Proc., 1st Japan–US Workshop on Testing, Modelling, and Simulation (GSP 143) 205–216. Reston, VA: ASCE (2005).

J. Diaz-Rodriguez, V. Antonio-Izarraras, P. Bandini and J. Lopez-Molina, “Cyclic strength of a natural liquefiable sand stabilized with colloidal silica grout”, Can. Geotech. J 45, 1345–1355 (2008).

P. Gallagher, C. Conlee and K. Rollins, “Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk”, J Geotech. Geoenviron. Eng. 133, 186–196 (2007).

K. Andrianopoulos, G. Agapoulaki and A. Papadimitriou, “Simulation of seismic response of passively stabilized sand”, Geotech. Res. 3, 40-53 (2016).

I. Towhata, “Geotechnical earthquake engineering, Geomechanics and geoengineering”, edited by W Wu and RI Borja, 697. Berlin: Springer (2008).

D. Porcino, V. Marciano and R. Granata, “Static and dynamic properties of a lightly cemented silicate-grouted sand”, Can. Geotech. J 49, 1117–1133 (2012).

A. Vranna and T. Tika, “The mechanical behavior of a clean sand stabilized with colloidal silica”, In Proc., 16th European Conf. on Soil Mechanics and Geotechnical Eng. London: ICE Publishing. London (2015).

G. Agapoulaki and A. Papadimitriou, “Rheological Properties of Colloidal Silica Grout for Passive Stabilization Against Liquefaction”, J Mater. Civ. Eng. 30, 04018251 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002377

S. Shen, Z. Wang, J. Yang and C. Ho, “Generalized approach for prediction of jet grout column diameter”, J Geotech. Geoenviron. Eng. 139, 2060–2069 (2013).

M. Santagata, A. Bobet, A. El-howayek, F. Ochoa-Carnejo and J. Sinfield, “Building a nanostructure in the pore fluid of granular soils”, London, Taylor, and Francis (2015).

P. Gallagher and Y. Lin, “Colloidal silica transport through liquefiable porous media”, J Geotech. Geoenviron. Eng. 135, 1702–1712 (2009).

p. Gallagher and Y. Lin, “Column testing to determine colloidal silica transport mechanisms”, Geo-Frontiers Congress 2005: Innovations in Grouting and Soil Improvement, Reston, VA: ASCE, (2005).

Y. Lin, “Colloidal silica transport mechanisms for passive site stabilization of liquefiable soils”, Ph.D. Dissertation, Drexel Univ. (2006).

Y. Lin and P. Gallagher, “Three-meter column testing of colloidal silica transport through porous media”, in: Ground Modification and Seismic Mitigation (GSP 152), 417-424. Reston, VA: ASCE. Presented at the GeoShanghai International Conference 2006 (2006).

P. Gallagher and S. Finsterle, “Physical and numerical model of colloidal silica injection for passive site stabilization”, Vadose Zone J 3, 917–925 (2004).

M. Hamderi and P. Gallagher, “Pilot-scale modeling of colloidal silica delivery to liquefiable sands”, Soils Found. 55, 143–153 (2015).

A. Koch, “Model testing of passive site stabilization”, Ph.D. Dissertation, Drexel Univ. (2002).

M. Noll, D. Epps, C. Bartlett and P. Chen, “Pilot field application of a colloidal silica gel technology for in situ hot spot stabilization and horizontal grouting”, in: 7th National Outdoor Action Conf., National Groundwater Asso., 207219. Westerville, OH: Water Well Journal Publishing Com. (1993).

C. Conlee, “Dynamic properties of colloidal silica soils using centrifuge model tests and a full-scale field test”, Ph.D. Dissertation, Drexel Univ. (2010).

DuPont, “Ludox colloidal silica: properties, uses, storage and handling”, Product Information, 19, Wilmington, DE: DuPont (1997).

P. Greenwood and J. Otterstedt, “Some Important, fairly new uses of colloidal silica/silica sol, Fundamentals and Applications, Chapter; 57”, 1st ed. Publisher: Taylor and Francis, Editors: Bergna, HE and Roberts, WO (2005).

Z. Darvishi and A. Morsali, “Synthesis and characterization of nano bentonite by sonochemical method”, Ultrason. Sonochem. 18, 238–242 (2011).

W. Nesse, “Introduction to mineralogy”, New York: Oxford University Press (2000).

W. Sutherland, “Wyoming Bentonite”, Wyoming State Geological Sur. Retrieved 12 Jan 2021 (2014).

J. Jackson, “Bentonite, Glossary of geology”, 4th ed. American Geological Institute, Alexandria, Virginia (1997).

M. Abdou, A. Al-sabagh and M. Dardir, “Evaluation of Egyptian bentonite and nano-bentonite as drilling mud”, Egypt J Pet. 22, 53–59 (2013).

A. Teplitskiy, R. Gee and R. Kourmaev, “Application of physical-chemical properties of bentonite utilized in construction”, as viewed through the TRIZ Prism (2005).

A. Perry, “Why bentonite clays are safe to ingest”, Bentonite clay info.com website (last access on June 16, 2021) (2019).

D. Anderson and P. Hoekstra, “Migration of Interlamellar Water During Freezing and Thawing of Wyoming Bentonite”, Soil Sci. Soc. Am. J. 29, 498–503 (1965).

T. Brown, N. Idoine, E. Raycraft, R. Shaw, S. Hobbs, P. Everett, E. Deady and T. Bide, “World Mineral Production 2012-16”, British Geological Survey, Nottingham, England (2016).

J. Hosterman and S. Patterson, “Bentonite and fuller’s earth resources of the United States”, U.S. Geological Survey Professional Paper. 1522, United States Government Printing office, Washington, DC, USA (1992).

B. Butcher, “The Advantages of a Salt/Bentonite Backfill for Waste Isolation Pilot Plant Disposal Rooms”, MRS Proceedings, 333, 911 (1993).

B. Theng, “Formation and Properties of Clay Polymer Complexes”, Developments in Soil Science 9. Elsevier, Amsterdam (1979).

C. Boswell, B. Swanney and W. Owers, “Sulfur/sodium bentonite prills as sulfur fertilizers. Effect of sulfur-sodium bentonite ratios on the availability of sulfur to pasture plants in the field”, Fertil. Res. 15, 33–45 (1988).

A. Muscolo, T. Papalia, G. Settineri, C. Mallamaci and M. Panuccio, “Sulfur bentonite organic based fertilizers as tool for improving bio-compounds with antioxidant activities in red onion”, J. Sci. Food Agric. 100, 785–793 (2020).

R. Robertson, “Fuller’s Earth. A History of calcium montmorillonite”, 1st ed. Volturna Press, U.K. (1986).

G. Christidis, A. Blum and D. Eberl, “Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites”, Appl. Clay Sci. 34, 125–138 (2006).

D. Eisenhour and R. Brown, “Bentonite and Its Impact on Modern Life”, Elements 5, 83–88 (2009).

I. Odom, “Smectite clay Minerals: Properties and Uses”, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 311, 391–409 (1984).

D. McCarty, B. Sakharov and V. Drits, “New insights into smectite illitization: A zoned K-bentonite revisited”, Am. Mineral. 94, 1653–1671 (2009).

K. Bekkour, M. Leyama, A. Benchabane and O. Scrivener, “Time-dependent rheological behavior of bentonite dispersions: an experimental study”, J Rheol. 49, 1329–1345 (2005).

J. Durn, M. Ramos-Tejada, F. Arroyo and F. Gonzlez-Caballero, “Rheological and electrokinetic properties of sodium montmorillonite suspensions: I. Rheological properties and interparticle energy of interaction”, J Colloid Interf. Sci. 229, 107–117 (2000).

C. Harvey and G. Lagaly, “Industrial applications”, In: Bergaya, F., Lagaly, G. (Eds.), Handbook of Clay Science, 5B, 2nd ed. Elsevier (2013).

V. Kelessidis, C. Tsamantaki and P. Dalamarinis, “Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions”, Appl. Clay Sci. 38, 86–96 (2007).

S. Laribi, J. Fleureau, J. Grossiord and N. Kbir-Ariguib, “Effect of pH on the rheological behavior of pure and interstratified smectite clays”, Clay Min. 54, 29–37 (2006).

C. Malfoy, A. Pantet, P. Monnet and D. Righi, “Effects of the nature of the exchangeable cation and clay concentration on the rheological properties of smectite suspensions”, Clay Miner. 51, 656–663 (2003).

D. Penner and G. Lagaly, “Influence of anions on the rheological properties of clay mineral dispersions’, Appl. Clay Sci. 19, 131–142 (2001).

E. Tombacz and M. Szekeres, “Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes”, Appl. Clay Sci. 27, 75–94 (2004).

S. Abend and G. Lagaly, “Solgel transitions of sodium montmorillonite dispersions”, Appl. Clay Sci. 16, 201–227 (2000).

G. Lagaly and I. Dekany, “Chapter 8: Colloid Clay Science in Handbook of Clay Science. Part A: Fundamentals”, In: Bergaya F, Lagaly G (Eds.), Elsevier, Amsterdam (2013).

L. Michot, I. Bihannic, K. Porsch, S. Maddi, C. Baravian, J. Mougel and P. Levitz, “Phase diagrams of Wyoming Na-montmorillonite clay. Influence of particle anisotropy”, Langmuir 20, 10829-10837 (2004).

S. Yasuda, K. Wakamatsu and H. Nagase, “Liquefaction of artificially filled silty sands”, In Ground failures under seismic conditions (eds S. Prakash and P. Dakoulas), New York, NY, USA: ASCE. Geotech. Spec. Publ. 44, 91–104 (1994).

I. Gratchev, K. Sassa, V Osipov and V. Sokolov, “The liquefaction of clayey soils under cyclic loading”, Eng. Geol. 86, 70–84 (2006).

C. El Mohtar, A. Bobet, V. Drnevich, C. Johnston and M. Santagata, “Pore pressure generation in sands with bentonite: from small strains to liquefaction”, Geotechnique 64, 108–117 (2014).

J. Clarke, “Investigation of Time-Dependent Rheological Behavior of Sodium Pyrophosphate Bentonite Suspensions”, MSc thesis, Purdue University, West Lafayette, Indiana (2008).

M. Santagata, J. Clarke, A. Bobet, V. Drnevich, C. El Mohtar, P. Huang and C. Johnston, “Rheology of concentrated bentonite dispersions treated with sodium pyrophosphate for application in mitigating earthquake-induced liquefaction”, Appl. Clay Sci. 99, 24–34 (2014).

R. Goh, Y. Leong and B. Lehane, “Bentonite slurries-zeta potential, yield stress, adsorbed additive and time-dependent behaviour”, Rheol. Acta. 50, 29–38 (2011).

G. Lagaly, “Principles of flow of kaolin and bentonite dispersions”, Appl. Clay Sci. 4, 105–123 (1989).

P. Shankar, J. Teo, Y. Leong, A. Fourie and M. Fahey, “Adsorbed phosphate additives for interrogating the nature of interparticles forces in kaolin clay slurries via rheological yield stress”, Adv. Powder Technol. 21, 380–385 (2010).

P. Mongondry, T. Nicolai and J. Tassin, “Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions”, J Colloid Interf. Sci. 275, 191–196 (2004).

A. Witthoeft, M. Santagata and A. Bobet, “Numerical study of the effectiveness of bentonite treatment for liquefaction mitigation”, Presented at the Geotechnical special publication, Conference: GeoCongress 2012 (2012).

BYK, “Technical Information B-RI 21: Laponite performance”, BYK Additives and Instruments, Wesel, Germany (2014).

M. Kroon, G. Vos and G. Wegdem, “Structure and formation of a gel of colloidal disks”, Phys. Rev. E. 57, 1962–1970 (1998). https://doi.org/10.1103/PhysRevE.57.1962

A. El-Howayek, “Characterization, rheology and microstructure of laponite suspensions”, MSc thesis, Purdue University, West Lafayette, USA (2011).

F. Paula, G. da Silva, R. Aquino, J. Depeyrot, J. Fossum, K. Knudsen, G. Helgesen and F. Tourinho, “Gravitational and magnetic separation in self-assembled clay ferrofluid nanocomposites”, Braz. J Phys. 39, 163–170 (2009).

P. Levitz, E. Lecolier and A. Mourhid, “Liquid-solid transition of laponite suspensions at very low ionic strength: long-range electrostatic stabilization of anisotropic colloids”, Eur. Lett. 49, 676–677 (2000).

H. Tanaka, J. Meunier and D. Bonn, “Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels”, Phys. Rev. E. 69, 031404-1-6 (2004).

A. Howayek, A. Bobet, C. Johnston, M. Santagat and J. Sinfield, “Microstructure of sand laponite water systems using cryo-sem”, Presented at the Geo-Congress 2014 Technical Papers, ASCE, pp. 693-702 (2014).

F. Ochoa-Cornejo, A. Bobet, A. El-Howayek, C. Johnston, M. Santagata and J. Sinfield, “Discussion On: Laboratory investigation of liquefaction mitigation in silty sand using nanoparticles [Eng.Geol.204:23-32]”, Eng. Geol. 216, 161–164 (2017).

F. Ochoa-Cornejo, “Cyclic behaviour of sands with superplastic fines”, a dissertation submitted for the degree of Doctor of Philosophy, Purdue University, West Lafayette, Indiana (2015).

X.B. Huang, J.S. Sun, Y. Huang, B.C. Yan, X.D. Dong, F. Liu and R. Wang, “Laponite: a promising nanomaterial to formulate high-performance water-based drilling fluids”, Pet. Sci. 18, 579–590 (2021).


Ссылки

  • На текущий момент ссылки отсутствуют.