ВЛИЯНИЕ ПАРАМЕТРОВ СТРУЙНОГО РАСТВОРА НА ДОЛГОВЕЧНОСТЬ И ПРОЧНОСТНЫЕ СВОЙСТВА ГЛИНОЦЕМЕНТНОЙ СВАИ Effect of jet grout construction parameters on durability and strength properties of full-scale clayey soil-cement pile

Mustafa Fahmi Hasan, H. F. Hasan, H. F. Hasan, Hanifi Canakci, A. A. Mahdi, A. A. Mahdi

Аннотация


В ходе настоящего исследования в глинистом грунте методом двухкомпонентной (раствор-воздух) струйной цементации были изготовлены семь полномасштабных грунтоцементных свай. Соотношение воды и цемента поддерживали постоянным, равным 1; использовали пять давлений впрыска (300, 325, 350, 375 и 400 бар) и три скорости вращения (25, 35 и 45 об/мин). Анализируется влияние указанных
технологических параметров на физико-механические свойства и стойкость полученных свай к химическому воздействию (серной кислотой), а также к увлажнению и высыханию.

Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering”, vol. 61, No. 5


Литература


P. Lunardi, Ground improvement by means of jet-grouting, Proc. Inst. Civ. Eng. Improv. 1 (1997) 65–85.

P. Croce, A. Flora, G. Modoni, Jet grouting: technology, design and control, CRC Press, 2014.

R. Akan, S.N. Keskin, S. Uzundurukan, Multiple regression model for the prediction of unconfined compressive strength of jet grout columns, Procedia Earth Planet. Sci. 15 (2015) 299–303.

J. Tinoco, A.G. Correia, P. Cortez, Jet grouting mechanicals properties prediction using data mining techniques, in: Grouting Deep Mix. 2012, 2012: pp. 2082–2091.

I.H. Erkan, Ö. Tan, The effect of pulling and rotation speed on the jet grout columns, Int. J. Civ. Environ. Eng. 10 (2017) 1690–1694.

R.L. Parsons, C.P. Johnson, S.A. Cross, Evaluation of soil modification mixing procedures, 2001.

S. Ghavami, H. Jahanbakhsh, A.S. Azizkandi, F.M. Nejad, Influence of sodium chloride on cement kiln dust-treated clayey soil: strength properties, cost analysis, and environmental impact, Environ. Dev. Sustain. (2020) 1–20.

E.A. Basha, R. Hashim, H.B. Mahmud, A.S. Muntohar, Stabilization of residual soil with rice husk ash and cement, Constr. Build. Mater. 19 (2005) 448–453.

A.A. Al-Rawas, A.W. Hago, H. Al-Sarmi, Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman, Build. Environ. 40 (2005) 681–687.

F. Sariosseiri, B. Muhunthan, Effect of cement treatment on geotechnical properties of some Washington State soils, Eng. Geol. 104 (2009) 119–125.

M.R. Asgari, A.B. Dezfuli, M. Bayat, Experimental study on stabilization of a low plasticity clayey soil with cement/lime, Arab. J. Geosci. 8 (2015) 1439–1452.

F. Sariosseiri, B. Muhunthan, Geotechnical properties of Palouse loess modified with cement kiln dust and Portland cement, in: GeoCongress 2008 Charact. Monit. Model. GeoSystems, 2008: pp. 92–99.

R.K. Sharma, Laboratory study on stabilization of clayey soil with cement kiln dust and fiber, Geotech. Geol. Eng. 35 (2017) 2291–2302.

E.K. Attiogbe, S.H. Rizkalla, Response of concrete to sulfuric acid attack, ACI Mater. J. 85 (1988) 481–488.

A. Allahverdi, F. Skvara, Sulfuric acid attack on hardened paste of geopolymer cements-Part 1. Mechanism of corrosion at relatively high concentrations, Ceram. Silikaty. 49 (2005) 225.

A. Puri, G. Voicu, A. Badanoiu, Expansive binders in the Portland cement-calcium aluminate cement-calcium sulfate system, Rev Chim-Bucharest. 61 (2010) 740–744.

J.P. Gorninski, D.C. Dal Molin, C.S. Kazmierczak, Strength degradation of polymer concrete in acidic environments, Cem. Concr. Compos. 29 (2007) 637–645.

A.M. Izzat, A.M.M. Al Bakri, H. Kamarudin, A.V. Sandu, G.C.M. Ruzaidi, M.T.M. Faheem, L.M. Moga, Sulfuric acid attack on ordinary Portland cement and geopolymer material, Rev. Chim. 64 (2013) 1011–1014.

L. Gu, T. Bennett, P. Visintin, Sulphuric acid exposure of conventional concrete and alkali-activated concrete: Assessment of test methodologies, Constr. Build. Mater. 197 (2019) 681–692. https://doi.org/10.1016/j.conbuildmat.2018.11.166.

T.A. Aiken, W. Sha, J. Kwasny, M.N. Soutsos, Resistance of geopolymer and Portland cement based systems to silage effluent attack, Cem. Concr. Res. 92 (2017) 56–65.

K. Sobhan, B.M. Das, Durability of soil--cements against fatigue fracture, J. Mater. Civ. Eng. 19 (2007) 26–32.

M.A. Al-Obaydi, I.M. Al-Kiki, A.H. Al-Zubaydi, Strength and durability of gypseous soil treated with waste lime and cement, J. Al-Rafidain Eng. 18 (2010) 28–42.

A. Al-Zubaydi, Effect of static soaking under different temperatures on the lime stabilized gypseous soil, Tikrit J. Eng. Sci. 18 (2011) 42–51.

J.-P. Benhamou, Indications for liver transplantation in primary biliary cirrhosis, Hepatology. 20 (1994) S11--S13.

A. ASTM, C150/C150M-17, Standard Specification for Portland Cement, Am. Soc. Test. Mater. West Conshohocken, PA, USA. (2017).

P. Concretes, Standard Test Methods for Chemical Resistance of Mortars , Grouts , and Monolithic, Current. 04 (1998) 1–6.

T. Compacted, S. Mixtures, M.S. Compactors, Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures, Methods. 04 (2011) 1–8. https://doi.org/10.1520/D0559.

D. ASTM, Standard test method for unconfined compressive strength of cohesive soil, ASTM Stand. D. 2166 (2006).

J.J. Chang, W. Yeih, C.C. Hung, Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes, Cem. Concr. Compos. 27 (2005) 85–91.

S. Thokchom, Fly ash geopolymer pastes in sulphuric acid, Int. J. Eng. Innov. Res. 3 (2014) 943–947.

S. Wallah, B.V. Rangan, Low-calcium fly ash-based geopolymer concrete: long-term properties, (2006).

A. Suddeepong, A. Intra, S. Horpibulsuk, C. Suksiripattanapong, A. Arulrajah, J.S. Shen, Durability against wetting-drying cycles for cement-stabilized reclaimed asphalt pavement blended with crushed rock, Soils Found. 58 (2018) 333–343. https://doi.org/10.1016/j.sandf.2018.02.017.

V.B. Chowdary, V. Ramanamurty, R.J. Pillai, Experimental evaluation of strength and durability characteristics of geopolymer stabilised soft soil for deep mixing applications, Innov. Infrastruct. Solut. 6 (2021) 1–10.

.Irem Kalipcilar, A. Mardani-Aghabaglou, G.I. Sezer, S. Altun, A. Sezer, Assessment of the effect of sulfate attack on cement stabilized montmorillonite, Geomech Eng. 10 (2016) 807–826.

M.T. Bassuoni, M.L. Nehdi, Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction, Cem. Concr. Res. 37 (2007) 1070–1084.

M.A.M. Ariffin, M.A.R. Bhutta, M.W. Hussin, M.M. Tahir, N. Aziah, Sulfuric acid resistance of blended ash geopolymer concrete, Constr. Build. Mater. 43 (2013) 80–86.

S. Liu, L. Li, Z. Wang, J. Wang, M. Rao, Study on Strength and Microstructure of Cement Pastes Containing Limestone Powder under Flowing Acid Solution Condition, ISRN Ceram. 2012 (2012) 1–6. https://doi.org/10.5402/2012/719636.

R. Djelloul, S.A.B. Mrabent, A. Hachichi, J.-M. Fleureau, Effect of cement on the drying--wetting paths and on some engineering properties of a compacted natural clay from Oran, Algeria, Geotech. Geol. Eng. 36 (2018) 995–1010.

ASTM, D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, Astm D854. 2458000 (2000) 1–7. https://doi.org/10.1520/D0854-14.

ASTM D4318, ASTM D 4318-10, A. D4318-05, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, Report. 04 (2005) 1–14. https://doi.org/10.1520/D4318-17E01.


Ссылки

  • На текущий момент ссылки отсутствуют.