ЭНЕРГОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАСПРОСТРАНЕНИЯ СЕЙСМИЧЕСКИХ ВОЛН В КОРЕННЫХ И НАРУШЕННЫХ ПОРОДАХ НА СКЛОНЕ Energy Dynamic Characteristics of Seismic Wave Propagation in Bedrock and Overburden Layer Slope

Honglue Qu, Zhe Zhang, Yanan Gao, Qian Mei, Yuanyuan Deng

Аннотация


На основе полученного авторами аналитического решения анализируется распространение сейсмических волн в слоистом массиве на склоне, сложенном нарушенным грунтом, покрывающим коренную породу. Показано, что угол падения существенно влияет на коэффициенты отражения и прохождения волн, а также показатели затухания энергии, что должно учитываться в практических задачах.


Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering», vol.61, No.3


Литература


A. Haider, E. Song and P. Li, “Numerical simulation and absorbing boundary conditions for wave propagation in a semi-infinite media with a linear isotropic hardening plastic model,” Soil Dynamics and Earthquake Engineering, 125, (2019).

C. G. Professor, D.Sc. Knott and F.R.S.E. III, “Reflection and refraction of elastic waves, with seismological applications,” Philosophical Magazine, 48(290), 64-97 (1924).

C. M. Keith and S. Crampin, “Seismic body waves in anisotropic media: Reflection and refraction at a plane interface,” Geophysical Journal International, 49(1), 181–208 (1977).

W. F. Murphy, “Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass,” Journal of the Acoustical Society of America, 71(6), 1458–1468 (1982).

J. Dvorkin and A. Nur, “Dynamic poroelasticity; a unified model with the squirt and the biot mechanisms,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 58(4), 524-533 (1993).

A. Chattopadhyay, “Wave reflection and refraction in triclinic crystalline media,” Archive of Applied Mechanics, 73(8), 568–579 (2004).

W. Y. Chen, G. X. Chen, T. D. Xia, et al, “Energy flux characteristics of seismic waves at the interface between soil layers with different saturations,” Science China (Technological Sciences), 57, 2062–2069 (2014).

H. G. Tang, B. S. He and H. B. Mou, “P- and S-wave energy flux density vectors,” Society of Exploration Geophysicists, 81(6), 357-368 (2016).

M. Kumar, M. Kumari and M. S. Barak, “Reflection of plane seismic waves at the surface of double-porosity dual-permeability materials,” Petroleum Science, 15, 521-537 (2018).

P. Singh, A. Chattopadhyay, A. Srivastava, et al, “Reflection and Transmission of P-Waves in an Intermediate Layer Lying Between Two Semi-infinite Media,” Pure and Applied Geophysics, 175, 4305-4319 (2018).

S. P. Timoshenko and J. N. Goodier, “Theory of Elastieity,” McGraw Hill Higher Education, New York, (1951).

Y. C. Fung, “Foundations of solid mechanics,” Prentice-Hall, (1965).

X. Tong, G. A. Mcmechan, “Composite memory variables for viscoelastic synthetic seismograms,” Geophys J Int, 121(2), 634–639 (1995).

L. N. Persen, “Rock dynamic and geophysics exploration-introduction to stress wave in rock,” New York: Elsevier, Amsterdam, (1975).

B. H. Niu and C. Y. Sun, “Developing theory of propagation of seismic waves –medium model and propagation of seismic waves,” Prog in Geophy, 19(2), 255-263 (2004). (In Chinse)

H. Y. Zhuang, G. X. Chen, Y. X. Liang, et al, “A developed dynamic viscoelastic constitutive relations of soil and implemented by ABAQUS software,” Rock Soil Mech, 436-442 (2007). (In Chinese)

J. M. Carcione, “Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media,” 3rd ed, Elsevier Science, (2014).


Ссылки

  • На текущий момент ссылки отсутствуют.