КРИТИЧЕСКИЙ ГИДРАВЛИЧЕСКИЙ ГРАДИЕНТ ЭРОЗИИ ПРИ МОДЕЛИРОВАНИИ ФИЛЬТРАЦИОННОГО И СВОБОДНОГО ПОТОКОВ Critical hydraulic gradient of piping erosion under free and seepage flow coupling model
Аннотация
Предлагается модель для оценки рисков эрозии при свободном течении и просачивающемся потоке. Модель использует уравнение Навье-Стокса для описания свободного потока воды в поровом канале и расширенное уравнение Бринкмана-Дарси для описания фильтрационного потока в слабых грунтах. Выражение для критического гидравлического градиента, вызывающего эрозию, получено на основе предельного равновесия сил для отдельной частицы грунта внутри порового канала. Результаты теоретического расчета хорошо согласуются с результатами, полученными при проведении испытаний грунта. По сравнению с существующими, предложенная формула более общая и обладает большей точностью. Критический гидравлический градиент линейно изменяется в зависимости от пористости
слабого грунта (отрицательная корреляция), диаметра частиц внутри порового канала (положительная корреляция) и скачка напряжений на границе раздела между поровым каналом и грунтом (положительная корреляция).
Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering”, vol.60, No.5
Литература
R. Fell and J. J. Fry, "The state of the art of assessing the likelihood of internal erosion of embankment dams, water retaining structures and their foundations," Internal Erosion of Dams and Their Foundations, Taylor & Francis, London (2007).
J. E. Costa, "Floods from dam failures," U. S. Geological Survey, Denver, Open-File Rep. 85-560 (1985).
M. Foster, R. Fell, and M. Spannagle, "The statistics of embankment dam failures and accidents," Can. Geotech. J., 37(5), 1000-1024 (2000).
K. S. Richards and K. R. Reddy, "Critical appraisal of piping phenomena in earth dams," Bull. Eng. Geol. Environ. 66(4), 381-402 (2007).
K. Fujisawa, A. Murakami and S. I. Nishimura, "Numerical analysis of the erosion and the transport of fine particles within soils leading to the piping phenomenon," Soils & Foundations, 50(4), 471-482 (2010).
Y. Liang, C. Zeng, and J. Wang, et al., "Constant gradient erosion apparatus for appraisal of piping behavior in upward seepage flow," Geotechnical Testing Journal, 40(4), 630-642 (2017).
G. Hoffmans and L. V. Rijn, "Hydraulic approach for predicting piping in dikes," Journal of Hydraulic Research, 56(2), 268-281 (2018).
M. F. Ahlinhan and C. E. Ahlinhan, "Combined geometric hydraulic criteria approach for piping and internal erosion in cohesionless soils," Geotechnical Testing Journal, 42(1), 180-193 (2018).
M. S. Fleshman and J. D. Rice, "Constant gradient piping test apparatus for evaluation of critical hydraulic conditions for the initiation of piping," Geotechnical Testing Journal, 36(6), 834-846 (2013).
W. G. Bligh, "Dams, barrages and weirs on porous foundations," Eng. News, 64(26), 708 (1910).
E. W. Lane, "Security from under seepage: Masonary dams on earth foundations," Trans. Am. Soc. Civ. Eng., 100(1), 1235-1272 (1935).
J. Tammy, "An analysis on soil properties on predicting critical hydraulic gradients for piping progression in sandy soils," M. Sc. thesis, Utah State University, Logan, U. S., (2013).
J. Liu, "Theoretical basis of seepage control of Earth and rockfill dams and Engineering experience and lessons," [in Chinese], China Water & Power Press, Beijing, (2006).
B. Indraratna and S. Radampola, "Analysis of critical hydraulic gradient for particle movement in filtration," Journal of Geotechnical & Geoenvironmental Engineering, 128(4), 347-350 (2002).
J. Zhou, Y. F. Bai, and Z. X. Yao, "A mathematical model for determination of the critical hydraulic gradient in soil piping," Geoshanghai International Conference, (2010).
J. X. Sha, "Research on piping in porous media," [in Chinese], Water Conservancy and Water Transport Science, 1(03), 89-93 (1981).
G. Kovacs, "Seepage Hydraulics," Elsevier Scientific Publishing Company, New York, (1981).
P. Ming, J. Lu, and X. Cai, et al., " Multi-Particle model of the critical hydraulic gradient for dike piping," Soil Mech. and Found. Eng., 57(3), 200-210 (2020).
Z. V. Terzaghi, "Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface," Soil Mech. Found. Eng., 2(4), 197-200 (1965).
S. Wang, J. S. Chen, and Q. M. Zhong, et al., "Research on critical hydraulic gradient of piping gusher in granular soil," [in Chinese], Water Resources and Power, 36(09), 114-117 (2008).
A. W. Skempton and J. M. Brogan, "Experiments on piping in sandy gravels," Geotechnique, 44(3), 449-460 (1994).
B. Q. Xu, J. S. Chen, and Y. Liang, "Failure test and seepage deformation analysis of fine sand piping," [in Chinese], Water Resources and Power, 30(6), 66-69 (2012).
J. A. Ochoa-Tapia and S. Whitaker, "Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development," International Journal of Heat and Mass Transfer, 38(14), 2635-2646 (1995a).
J. A. Ochoa-Tapia and S. Whitaker, "Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment," International Journal of Heat and Mass Transfer, 38(14), 2647-2655 (1995b).
C. S. P. Ojha and V. P. Singh, "Influence of porosity on piping models of levee failure," Journal of Geotechnical and Geoenvironmental Engineering, 127(12), 1071-1074 (2001).
Ссылки
- На текущий момент ссылки отсутствуют.