ЖЕСТКОСТЬ ПРИ МАЛЫХ ДЕФОРМАЦИЯХ ПЕСКА, УПРОЧНЕННОГО ЦЕМЕНТАЦИЕЙ И АРМИРОВАННОГО ПОЛИПРОПИЛЕНОВЫМИ ВОЛОКНАМИ Small strain stiffness properties of Cement-Stabilized Sand and Reinforced with Polypropylene Fiber

Yousef Heidarizadeh, Seyed Hamid lajevardi, Mohammad Sharifipour

Аннотация


Приводятся результаты лабораторных исследований влияния добавления полипропиленовых волокон с различным процентным содержанием 0%, 0,2%, 0,4% и 0,8% от веса сухого песка на скорость сдвиговой волны и модуля упругости при малой деформации сдвига песков, стабилизированных 3%, 5% и 7% цемента, с учетом времени твердения раствора в течение 7, 28 и 56 дней соответственно. Исследования проводились на аппаратуре с использованием специальных гибких элементов, позволяющей определять скорость сдвиговой волны и модуля сдвига при малых деформациях. Сделан вывод, что наибольший модуль сдвига при деформации песков, стабилизированных цементом, достигается с добавлением полипропиленового волокна до 0,4%, а также, что наибольшее увеличение скорости поперечной волны и модуля упругости при малой деформации происходит в первые четыре недели твердения цементного раствора. 

Полный текст статей публикуется в английской версии
журнала «Soil Mechanics and Foundation Engineering” vol.59, No.2


Литература


A. Ates, " Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC)," Compos. B. Eng., 96, 295-304 (2016).

F. Changizi, and A. Haddad, " Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber," J. Rock Mech. Geotech. Eng., 7(4), 367-378 (2015).

M. Chen, S.L. Shen, A. Arulrajah, H. N. Wu, D. W. Hou, and Y. S. Xu, " Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber reinforced and cement-stabilized Shanghai soft clay," Geotext. Geomembr., 43(6), 515-523 (2015).

R. Sridhar, " A Review on Cyclic Strength of Fiber Reinforced Soil," International Journal of Materials Science., 12(1), 33-46 (2017).

N. C. Consoli, M. D. T. Casagrande, P. Prietto, and A. Thome, "Plate load test on fibre-reinforced soil," J. Geotech. Geoenviron. Eng., 129(10), 951–955 (2003).

M. Malekzadeh, and H. Bilsel, " Swell and compressibility of fiber reinforced expansive soils," International Journal of Advanced Technology in Civil Engineering., 1(2), 637-649 (2012).

H. Jiang, Y. Cai, and J. Liu, " Engineering properties of soils reinforced by short discrete polypropylene fiber," J. Mater. Civ. Eng., 22(12), 1315-1322 (2010).

S. Cui, W. Xie, J. Wang, and S. Huang, "Engineering Properties of Collapsible Loess Stabilized by Cement Kiln Dust," Soil Mech. Found. Eng., 56(5), 328–335 (2019).

S. Horpibulsk, R. Rachan, A. Suddeepong, and A. Chinkulkijniwat, " Strength development in cement admixed Bangkok clay: laboratory and field investigations," Soils Found., 51(2), 239-251‏ (2011).

S. Horpibulsk, A. S. Balasubramaniam, and D. T. Bergado, " Undrained shear behavior of cement admixed clay at high water content," J. Geotech. Geoenviron. Eng., 130(10), 1096-1105 (2004).

K. Uddin, N. Miura, and D. T. Bergado, " Engineering behavior of cement-treated Bangkok soft clay," Geotech. Eng., 28, 89-119 (1997).

M. N. Ibragimov, "Characteristics of Soil Grouting by Hydro-Jet Technology," Soil Mech. Found. Eng., 50(5), 200–205 (2013).

C. Tang, B. Shi, and W. Chen, " Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil," Geotext. Geomembr., 194-202 (2007).

N. C. Consoli, M. A. A. Bassani, and L. Festugato, " Effect of fiber-reinforcement on the strength of cemented soils," Geotext. Geomembr., 28(4) 344-351 (2010).

N.C. Consoli, A. V. da Fonseca, R.C. Cruz, and K.S. Heineck, " Fundamental parameters for the stiffness and strength control of artificially cemented sand," J. Geotech.Geoenviron., 135 (9), 1347–1353 (2009).

S.H. Jafari, S.H. Lajevardi, and M. Sharifipour, "Correlation between the small-strain dynamic properties and unconfined compressive strength of the lime-stabilized soft clay," Soil Mech. Found. Eng., accepted (2020).

R. V. D. Flores, G. D. Emidio, and W. F. Van Impe, " Small-strain shear modulus and strength increase of cement-treated clay," Geotech. Test. J., 33(1), 1-10 (2009).

B. Fatahi, T. M. Le, B. Fatahi, and H. Khabbaz, " Small-strain properties of soft clay treated with fibre and cement," Geosynth. Int., 20(4), 286-300 (2013).

K. Yao, Y. Liu, Q. Chen, J. Hu, and F. H. Lee, " Maximum Shear Modulus of Cement-Treated Singapore Marine Clay," DEStech Transactions on Materials Science and Engineering, (ictim).‏(2017).

C. Murillo, M. Sharifipour, B. Caicedo, L. Thorel, and C. Dano, "Elastic parameters of intermediate soils based on bender-extender elements pulse tests," Soils. Found., 51(4), 637-649 (2011).

T. Ogino, T. Kawaguchi, S. Yamashita, and S. Kawajiri, " Measurement deviations for shear wave velocity of bender element test using time domain, cross-correlation, and frequency domain approaches," Soils Found., 55(2), 329-342 (2015).

C.M. Chan, " Bender Element Test in Soil Specimens: Identifying the Shear Wave Arrival Time," Research Centre for Soft Soils (RECESS) Universiti Tun Hussein Onn, Malaysia., (2011).

E. G. ‏ Brignoli, M Gotti, and K. H. Stokoe, " Measurement of shear waves in laboratory specimens by means of piezoelectric transducers," Geotech. Test. J., 51(4), 384-397 (1996).

E. C. Leong, J. Cahyadi, and H. Rahardjo, " Measuring shear and compression wave velocities of soil using bender–extender elements," Can. Geotech. J., 46(7), 792-812 (2009).

S. Yamashita, T. Kawaguchi, T. Nakata, Y. Mikami, T. Fujiwara, and S. Shibuya, " Interpretation of international parallel test on the measurement of Gmax using bender elements," Soils. Found., 49(4), 631-650 (2009).

G. Viggiani and J. H. Atkinson, " Interpretation of bender element tests," Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 8(32), 373A (1995).


Ссылки

  • На текущий момент ссылки отсутствуют.