МОДЕЛЬ ПЕРЕДАЧИ НАГРУЗКИ С УЧЕТОМ ПОЛЗУЧЕСТИ ГРУНТОВ ДЛЯ СВАЙ СО СТУПЕНЧАТЫМ СУЖЕНИЕМ A time-dependent load-transfer model for large step-tapered hollow pile based on the disturbed state concept

Song Jiang, Ming Huang, An Deng, Dexiang Xu, Tao Fang

Аннотация


Исследуется работа конструкции фундамента в виде большой ступенчато-конической пустотелой сваи. Показано, что использование такой конструкции приводит к существенному увеличению сопротивления по боковой поверхности и позволяет снизить собственный вес и стоимость строительства. Такая свая может быть хорошим решением там, где нижележащий грунт слабый, а верхние слои должны выдерживать значительные нагрузки. В частности, она использовалась для фундамента эстакадного моста в карстовой зоне. Взаимодействие сваи с грунтом исследуется и моделируется с учетом ползучести. Для оптимизации конструкции сваи проводятся параметрические исследования геометрии сваи и свойств грунта.

Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering”, vol.60, No.2


Литература


Booker JR, Poulos HG. (1976) Analysis of creep settlement of pile foundations. ASCE Journal of Geotechnical Engineering,102: 1-14.

Chen Y-D, Deng A, Wang A-T, Sun H-S, 2018. Performance of screw–shaft pile in sand: Model test and DEM simulation. Computer and Geotechnics, 104: 118-130.

Chen Y-D, Deng A, Lu F, Sun H-S, 2020. Failure mechanism and bearing capacity of vertically loaded pile with partially-screwed shaft: Experiment and simulations. Computer and Geotechnics, 118: 103337.

Desai CS, Ma Y. (1992) Modelling of joints and interfaces using the disturbed state concept. Int. J. Numer. Anal. Meth. Geomech., (16):623.

Desai CS, Toth J. (1996) Disturbed state constitutive modeling based on stress-strain and nondestructive behavior. Int J Solids and Struct,1996, 33(11):1619.

Desai C S. (2001) Mechanics of Materials and Interfaces: The Disturbed State Concept. CRC Press, Boca Raton, United States of America.

Frantziskonis G, Desai CS. (1987) Elasto-plastic model with damage for strain softening geomaterials. Acta Mechanica, 68:151.

Ghazavi M and Lavasan AA. (2006) Bearing capacity of tapered and step-tapered pile subjected to axial compressive loading. In the 7th international conference on coasts. Ports & marine structures, ICOPMAS, Tehran, Iran.

Ghazavi M and Ahmadi HA. (2008) Time-Dependent Bearing Capacity Increase of Uniformly Driven Tapered Piles- Field Load Test. International Conference on Case Histories in Geotechnical Engineering, 38.

Guo WD. (2000) Visco-elastic load transfer models for axially loaded pile. International Journal for Numerical and Analytical Method in Geomechanics, 24:135-163.

Hambleton and Stanier. (2019) Linking the Installation Reponse of Screw Piles to Soil Strength and Ultimate Capacity. Proceedings of the 1st International Symposium on Screw Piles for Energy Applications, Dundee, May 27-28, 57-58.

Huang M, Jiang YJ, Wang SJ, Deng T. (2017) Identification of the Creep Model and Its Parameters of Soft Rock on the Basis of Disturbed State Concept, 38(06):570-578. (in Chinese)

Huang M, Jiang S, Xu DX, Deng T, Shangguan X. (2018) Load Transfer Mechanism and Theoretical Model of Step Tapered Hollow Pile with Huge Diameter. Chinese Journal of Rock Mechanics and Engineering, 37(10):2370-2383. (in Chinese)

ISMAEL NF. (2003) Load Tests on Straight and Step Tapered Bored Pile in Weakly Cemented Sands. International Symposium on Field Measurements in Geomechanics.

ISMAEL NF. (2010) Behavior of Step Tapered Bored Pile in Sand under Static Lateral Loading. Journal of Geotechnical & Geoenvironmental Engineering, 136(5): 669-676.

Itasca (2005) Fast Language Analysis of continua in 3 dimensions, version 3.0, user’s manual. Itasca Consulting Group, Inc.

Jiang S, Huang M, Fang T, Chen W, Shangguan X. (2020) A new large step-tapered hollow pile and its bearing capacity. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 173(3):191-206.

Kodikara J, Kong KH, Haque A. (2006) Numerical evaluation of side resistance of tapered pile in mudstone. Géotechnique, 56(7): 505-510.

Ling XC, and Cai DS. (2002) Rock Mechanics. Hitp Harbin Institute of Technology Press, Harbin, China. (in Chinese)

Liu QJ, and Yang LD. (2006) New model of load transfer function for pile analysis based on disturbed state model. Journal of Tong ji University (Natural Science), 34(2): 165-169. (in Chinese)

Li Z, Wang KH, Li SH, Wu WB. (2015) A new approach for time effect analysis in the settlement of single pile in nonlinear viscoelastic soil deposits. J Zhejiang Univ-Sci A (Appl Phys & Eng), 16(8): 630-643.

Manandhar S, Yasufuku N. (2013) Vertical bearing capacity of tapered pile in sands using cavity expansion theory. Soils and Foundations, 53(6): 853-867.

Michael SK. (2001) A novel approach to predict current stress–strain response of cement based materials in infrastructure. [s. l.]: The University of Arizona.

Sakr M, Naggar MHE. (2007) Wave equation analyses of tapered FRP–concrete pile in dense sand. Soil Dynamics & Earthquake Engineering, 27(2): 166-182.

Suits LD, Sheahan TC, Paik K, Lee J, Kim D. (2011) Axial Response and Bearing Capacity of Tapered Pile in Sandy Soil. Geotechnical Testing Journal, 34(2): 122-130.

Wu G, Zhang L. (2004) Analysis on post-failure behaviors of rock in uniaxial compression using disturbed state concept theory. Chinese Journal of Rock Mechanics and Engineering, 23(10): 1628-1634. (in Chinese)

Wu WB, Wang KH, Zhang ZQ, Chin JL. (2012) A new approach for time effect analysis of settlement for single pile based on virtual soil-pile model. Journal of Central South University, 19(9): 2656-2662.


Ссылки

  • На текущий момент ссылки отсутствуют.