Открытый доступ Открытый доступ  Ограниченный доступ Платный доступ или доступ для подписчиков




Энергетическая свая представляет собой глубокий фундамент, который сочетает в себе две функции: передачу конструктивных нагрузок на грунт и обслуживание тепловых потребностей здания. Обсуждаются изменения, вызванные циклами нагрева и охлаждения, которые существенно влияют на величину и распределение нагрузки на сваю. Рассматривается механическое поведение энергетических свай и практика их использования. Приводятся основные факторы, оказывающие определяющее влияние на изменение тепловых свойств грунта.

Полный текст:

PDF (English)


R. Bertani , "Geothermal Power Generation in the World 2010-2014 Update Report," in Proceedings World Geothermal Congress, Bali, Indonesia (2010).

A. D. Donna, A. F, R. Loria and L. Laloui, "Numerical Study of the Response of a Group of Energy Piles Under Different Combinations of Thermo-Mechanical Loads," Computers and Geotechnics, 72, 126–142 (2015).

H. Brandl, "Energy Foundations and Other Thermo-Active Ground Structures," Géotechnique, 56, no. 2, 81-122, (2006).

j. K. Mitchell and K. Soga, Fundamentals of Soil Behavior, 3rd ed., New jersey: Wiley (2005).

G. H. Watson, W. A. Slusarchuk and R. K. Rowley, "Determination of Some Frozen and Thawed Properties of Permafrost Soils," Can. Geotech, 10, 592-606 (1973).

I. Vähäaho, "The Effects of Thaw Consolidation on Geotechnical Properties of Clay," Geotechnical Department, City of Helsinki (1989).

O. B. Andersland, An Introduction to Frozen Ground Engineering, New York,Chapman & Hall: Springer Science & Business Media (1994).

B. Paudel and B. Wang, "Freeze-Thaw Effect on Consolidation Properties of Fine Grained Soils from the Mackenzie Valley, Canada," in GEO2010: 63rd Canadian Geotechnical Conference, Calgary, Alberta (2010).

C. Clauser, "Heat Transport Processes in the Earth’s Crust," Surveys in Geophysics, vol. 30, no. 3, pp. 163-191, 2009.

I. W. Johnston, G. A. Narsilio and S. Colls, "Emerging Geothermal Energy Technologies," KSCE Journal of Civil Engineering, 15, no. 4, 643-653 (2011).

F. Loveridge, The Thermal Performance of Foundation Piles Used as Heat Exchangers in Ground Energy Systems (PhD thesis), Southampton: University of Southampton, Faculty of Engineering and the Environment (2012).

H. Brandl, "Thermo-Active Ground-Source Structures for Heating and Cooling," Procedia Engineering, 57, 9-18 (2013).

N. Batini, A. F. Loria, P. Conti, D. Testi, W. Grassi and L. Laloui, "Energy and Geotechnical Behaviour of Energy Piles for Different Design Solutions," Applied Thermal Engineering, 86, 199-213 (2015).

K. Morino and T. Oka, "Study on Heat Exchanged in Soil by Circulating Water in a Steel Pile," Energy and Buildings, 21, no. 1, 65-78 (1994).

X. Li, Y. Chen, Z. Chen and J. Zhao, "Thermal Performances of Different Types of Underground Heat Exchangers," Energy and Buildings, 38, no. 5, 543-547 (2006).

H. Park, S.-R. Lee, S. Yoon and J.-C. Choi, "Evaluation of Thermal Response and Performance of PHC Energy Pile: Field Experiments and Numerical Simulation," Applied Energy, 103, no. 1, 12-24 (2013).

C.-E. Moon and J. M. Choi, "Heating Performance Characteristics of the Ground Source Heat Pump System with Energy-Piles and Energy-Slabs," Energy, 81, 27-32 (2015).

B. Bezyan, S. Porkhial and A. A. Mehrizi, "3-D Simulation of Heat Transfer Rate in Geothermal Pile-Foundation Heat Exchangers with Spiral Pipe Configuration," Applied Thermal Engineering, 87, 655-668 (2015).

Q. Zhao, F. Liu, C. Liu, M. Tian and B. Chen, "Influence of Spiral Pitch on the Thermal Behaviors of Energy Piles with Spiral-Tube Heat Exchanger," Applied Thermal Engineering (2017).

J. Gao, X. Zhang, J. Liu, K. Li and J. Yang, "Numerical and Experimental Assessment of Thermal Performance of Vertical Energy Piles: An Application," Applied Energy, 85, 901–910 (2008).

S. Yoon, S.-R. Lee, J. Xue, K. Zosseder, G.-H. Go and H. Park, "Evaluation of the Thermal Efficiency and a Cost Analysis of Different Types of Ground Heat Exchangers in Energy Piles," Energy Conversion and Management, vol. 105, no. 1, pp. 393-402, 2015.

C. J. Wood, H. Liu and S. B. Riffat, "Comparative Performance of ‘U-Tube’ and ‘Coaxial’ Loop Designs for Use with a Ground Source Heat Pump," Applied Thermal Engineering, 37, no. 37, 190-195 (2012).

Jalaluddin, A. Miyara, K. Tsubaki, S. Inoue and K. Yoshida, "Experimental Study of Several Types of Ground Heat Exchanger Using a Steel Pile Foundation," Renewable Energy, 36, no. 2, 764-771 (2011).

W. Zhang, H. Yang, P. Cui, L. Lu, N. Diao and Z. Fang, "Study on Spiral Source Models Revealing Groundwater Transfusion Effects on Pile Foundation Ground Heat Exchangers," International Journal of Heat and Mass Transfer, 84, 119–129 (2015).

M. E. Suryatriyastuti, H. Mroueh and S. Burlon, "Understanding the Temperature-Induced Mechanical Behaviour of Energy Pile Foundations," Renewable and Sustainable Energy Reviews, 16, 3344– 3354 (2012).

L. Laloui, M. Nuth and L. Vulliet, "Experimental and Numerical Investigations of the Behaviour of a Heat Exchanger Pile," International Journal for Numerical and Analytical Methods in Geomechanics, 30, 763–781, (2006).

P. Bourne-Webb, B. Amatya, K. Soga, T. Amis, C. Davidson and P. Payne, "Energy Pile Test at Lambeth College, London: Geotechnical and Thermodynamic Aspects of Pile Response to Heat Cycles," Geotechnique, 59, no. 3, 237–248 (2009).

C. Knellwolf, H. Peron and L. Laloui, "Geotechnical Analysis of Heat Exchanger Piles," Journal of Geotechnical and Geoenvironmental Engineering, 137, no. 10, 890-902 (2011).

Y. Ouyang, K. Soga and Y. F. Leung, "Numerical Back-Analysis of Energy Pile Test at Lambeth College, London," Geo-Frontiers, 440-449 (2011).

C. K. Lee and H. N. Lam, "A Simplified Model of Energy Pile for Ground-Source Heat Pump Systems," Energy, 55, 838-845 (2013).

GSHP, "Thermal Pile Design, Installation and Materials Standard, Ground Source Heat Pump Association," Ground Source Heat Pump Association National Energy Centre, Milton Keynes (2012).

A. F. R. Loria, A. Gunawan, C. Shi, L. Laloui and C. W. Ng, "Numerical Modelling of Energy Piles in Saturated Sand Subjected to Thermo-Mechanical Loads," Geomechanics for Energy and the Environment, 1, 1-15 (2015).

Y. Dong, J. . S. McCartney and N. Lu, "Critical Review of Thermal Conductivity Models for Unsaturated Soils," Geotechnical and Geological Engineering, 33, 207–221 (2015).

O. T. Farouki, "Thermal Properties of Soils," U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire (1981).

S. W. Rees, M. H. Adjali, Z. Zhou, M. Davies and H. R. Thomas, "Ground Heat Transfer Effects on the Thermal Performance of Earth-Contact Structures," Renewable and Sustainable Energy Reviews, 4, 213-265 (2000).

D. Hillel, "Soil Temperature and Heat Flow," in Introduction to Environmental Soil Physics, Amsterdam ; Boston, Elsevier Science, 215-233 (2004)

C. P. Cervera, Ground thermal modelling and analysis of energy pile foundations (MS thesis), Helsinki: Aalto University (2013).

K. D. Murphy and J. S. McCartney, "Behavior of Full-Scale Energy Foundations in Denver, Colorado," In Proceedings of GeoChallenges: Rising to the Geotechnical Challenges of Colorado. ASCE, 217-229 (2012).

B. Wang, A. Bouazza, R. M. Singh and D. Barry-Macaulay, "Field Investigation of a Geothermal Energy Pile: Initial Observations," in Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris (2013).

G. A. Akrouch, M. Sa´nchez and J.-L. Briaud, "Thermo-Mechanical Behavior of Energy Piles in High Plasticity Clays," Acta Geotechnica, 9, 399–412 (2014).

M. Sutman, C. G. Olgun and T. Brettmann, "Full-Scale Field Testing of Energy Piles," in Proceedings of the International Foundations Congress and Equipment Expo 2015, San Antonio, Texas (2015).

K. D. Murphy, J. S. McCartney and K. S. Henry, "Evaluation of Thermo-Mechanical and Thermal Behavior of Full-Scale Energy Foundations," Acta Geotechnica, 10, 179-195 (2015).

S. You, X. Cheng, H. Guo and Z. Yao, "Experimental Study on Structural Response of CFG Energy Piles," Applied Thermal Engineering, 96, 640-651 (2016).

M. Sutman, T. Brettmann and C. G. Olgun, "Full-Scale In-Situ Tests on Energy Piles: Head and Base-Restraining Effects on the Structural Behaviour of Three Energy Piles," Geomechanics for Energy and the Environment, 18, 56-68 (2018).

G. F. Tagg, "Earth Resistances," UK, Limited, George Newnes (1964).

V. R. Tarnawski, W. H. Leong, F. Gori, G. D. Buchan and J. Sundberg, "Interparticle Contact Heat Transfer in Soil Systems at Moderate Temperatures," International Journal of Energy Research, 26, 1345–1358 (2002).

T. L. Brandon and J. K. Mitchell, "Factors Influencing Thermal Resistivity of Sands," Journal of Geotechnical Engineering, 115, no. 12, 1683-1698 (1989).

V. R. Tarnawski, T. Momose and W. H. Leong, "Assessing the Impact of Quartz Content on the Prediction of Soil Thermal Conductivity," Geotechnique, 59, no. 4, 331–338 (2009).

B. Usowicz, J. Lipiec, J. B. Usowicz and W. Marczewski, "Effects of Aggregate Size on Soil Thermal Conductivity: Comparison of Measured and Model-Predicted Data," International Journal of Heat and Mass Transfer, 57, 536–541 (2013).

A. Hadas, "Heat Transfer in Dry Aggregated Soil: I. Heat Conduction," Soil Science Society of America Journal, 41, no. 6, 1055-1059 (1977).

T. S. Yun and J. C. Santamarina, "Fundamental Study of Thermal Conduction in Dry Soils," Granular Matter, 10, 197–207 (2008).

D. N. Singh and K. Devid, "Generalized Relationships for Estimating Soil Thermal Resistivity," Experimental Thermal and Fluid Science, 22, 133-143 (2000).

K. M. Smits, T. Sakaki, A. Limsuwat and T. H. Illangasekare, "Thermal Conductivity of Sands Under Varying Moisture and Porosity in Drainage–Wetting Cycles," Vadose Zone J, 9, no. 1, 172–180, (2010).

W. O. Smith, "The Thermal Conductivity of Dry Soil," Soil Science, 53, no. 6, 435-460 (1942).

M. S. Kersten, "Laboratory Research for the Determination of the Thermal Properties of Soils," ACFEL Technical Report 23. AD 712516. (Also Thermal properties of soils. University of Minnesota Institute of Technology, Engineering Experiment Station Bulletin No. 28) (1949).

P. J. Bourne-Webb, B. Amatya and K. Soga, "A framework for understanding energy pile behaviour," ICE Proceedings Geotechnical Engineering, 166, no. 2, 170-177 (2013).

C. J. Wood, H. Liu and S. B. Riffat, "Use of Energy Piles in a Residential Building, and Effects on Ground Temperature and Heat Pump Efficiency," Geotechnique, 59, no. 3, 287-290 (2009).


  • На текущий момент ссылки отсутствуют.