ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ СМЕЩЕНИЙ МАССИВА ГОРНЫХ ПОРОД В ЗОНЕ РАЗЛОМОВ С УСТАНОВИВШЕЙСЯ ПОЛЗУЧЕСТЬЮ Displacement distribution patterns and governing factors of rock mass in a stable creeping fault zone
Аннотация
Некоторые области разломов характеризуются установившимся квазистатическим движением со скоростью скольжения, сопоставимой с тектоническими скоростями от миллиметров до десятков миллиметров в год, вызывая деформацию массива горных пород в активных зонах. Авторами разработана механическая модель ползучести для разлома с учетом того, что характер перемещений зависит от статического смещения на разрыве, характеристик разлома и геологических условий. Распределение перемещений определяется по локальным напряжениям, механическим параме-
трам массива горных пород в зоне разлома, коэффициенту трения контактных поверхностей между ядром разлома и зоной повреждения и углу наклона разлома. Чем выше степень горизонтального выдавливания и чем мягче горная масса, тем выше степень концентрации смещения в ядре разлома.
Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering” vol.59, No.3
Литература
Anastasopoulos and G. Gazetas, "Foundation–structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake," Bull. Earthq. Eng., 5(3), 253-275 (2007).
M. Bayati and J. Khademi Hamidi, "A case study on TBM tunnelling in fault zones and lessons learned from ground improvement," Tunn. Undergr. Space Technol, 63(162-170 (2017).
Y. Ben-Zion and C. G. Sammis, "Characterization of Fault Zones," Pure Appl. Geophys., 160(3-4), 677-715 (2003).
R. A. Harris, "Large earthquakes and creeping faults," Rev. Geophys., 55(1), 169-198 (2017).
N. M. Newmark and W. J. Hall. Pipeline design to resist large fault displacement, In: Proceedings of the U.S. National Conference on Earthquake Engineering, Michigan, USA, (1975).
V. Trifonov and V. P. Cherniy, "Elastoplastic stress–strain analysis of buried steel pipelines subjected to fault displacements with account for service loads," Soil. Dyn. Earthq. Eng., 33(1), 54-62 (2012).
R. L. Wang and Yeh, "A refined seismic analysis and design of buried pipeline for fault movement," Earthq. Eng. Strucd., 13(1), 75-96 (2010).
M. Ashtiani, A. Ghalandarzadeh and I. Towhata, "Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture," Can. Geotech. J., 53(3), 505-519 (2015).
M. H. Baziar, A. Nabizadeh, C. J. Lee and W. Y. Hung, "Centrifuge modeling of interaction between reverse faulting and tunnel," Soil. Dyn. Earthq. Eng., 65, 151-164 (2014).
T. D. O’rourke, J. K. Jung and C. Argyrou, "Underground pipeline response to earthquake-induced ground deformation," Soil. Dyn. Earthq. Eng., 91, 272-283 (2016).
T. Asakura, Y. Shiba, S. Matsuoka, T. Oya and K. Yashiro, "Damage to mountain tunnels by earthquake and its mechanism," Doboku Gakkai Ronbunshu, 2000(659), 27-38 (2000).
H. Chuan, L. Lin and J. Zhang, "Seismic damage mechanism of tunnels through fault zones," Chin. J. Geotech. Eng., 36(3), 427-434 (2014).
D. R. Faulkner, T. M. Mitchell, D. Healy and M. J. Heap, "Slip on 'weak' faults by the rotation of regional stress in the fracture damage zone," Nature, 444(7121), 922-925 (2006).
K. K. Bradbury and J. P. Evans, "Composition and Structure of the San Andreas Fault Observatory at Depth (SAFOD) Phase III Whole-Rock Core: Implications for Fault Zone Deformation and Fluid-Rock Interactions," Geological Society of America Denver Annual Meeting, (2010).
K.-F. Ma, H. Tanaka, S.-R. Song, C.-Y. Wang, J.-H. Hung, Y.-B. Tsai, J. Mori, Y.-F. Song, E.-C. Yeh and W. Soh, "Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project," Nature, 444(7118), 473 (2006).
S. Sheng-Rong, K. Li-Wei, E.-C. Yeh, W. Chien-Ying, J.-H. Hung and M. Kuo-Fong, "Characteristics of the lithology, fault-related rocks and fault zone structures in TCDP Hole-A," TAO: Terrestrial, Atmospheric and Oceanic Sciences, 18(2), 243 (2007).
C. a. J. Wibberley and T. Shimamoto, "Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan," J. Struct. Geol., 25(1), 59-78 (2009).
S. Dalgıç, "Tunneling in squeezing rock, the Bolu tunnel, Anatolian Motorway, Turkey," Eng. Geol., 67(1-2), 73-96 (2002).
C. Zhang, H. Zhou and Y. Zhu 2017. Study on structural adaptability of tunnels in active faults in Yuzhong Water Diversion Project [M]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Science.
H. Li, H. Wang, Z. Xu, J. Si, J. Pei, T. Li, Y. Huang, S. R. Song, L. W. Kuo and Z. Sun, "Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1)," Tectonophysics, 584(1), 23-42 (2013).
E. M. Anderson 1951. The dynamics of faulting [M].
W. D. Barnhart, "Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR," J. Geophys. Res.: Solid Earth, 122(1), 372-386 (2017).
Cavalié, C. Lasserre, M.-P. Doin, G. Peltzer, J. Sun, X. Xu and Z.-K. Shen, "Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR," Earth and Planetary Science Letters, 275(3-4), 246-257 (2008).
D. A. Lockner, C. Morrow, D. Moore and S. Hickman, "Low strength of deep San Andreas fault gouge from SAFOD core," Nature, 472(7341), 82 (2011).
C. Zhang, X. Liu, G. Zhu, H. Zhou, Y. Zhu and C. Wang 2019. Patterns of fault creep displacement along a tunnel that crosses a fault zone [M]. Chinese Academy of Sciences.
R. Shahidi and M. Vafaeian, "Analysis of longitudinal profile of the tunnels in the active faulted zone and designing the flexible lining (for Koohrang-III tunnel)," Tunn. Undergr. Space Technol, 20(3), 213-221 (2005).
Ссылки
- На текущий момент ссылки отсутствуют.