ЧУВСТВИТЕЛЬНОСТЬ КОЭФФИЦИЕНТА УСТОЙЧИВОСТИ ОТКОСОВ К ПАРАМЕТРАМ ВЫСОКИХ НАСЫПЕЙ В СЕЙСМИЧЕСКИХ УСЛОВИЯХ Sensitivity of high fill slope stability factors under seismic conditions

Shuaihua Ye, Anping Huang

Аннотация


Для определения чувствительности коэффициентов устойчивости откоса к физико-механическим и геометрическим характеристикам высокой грунтовой насыпи при сейсмическом воздействии вводится метод, основанный на оценке векторного подобия. Для достижения поставленной цели выбирается набор исходных параметров и проводится несколько серий расчетов коэффициентов устойчивости откосов при заданном акселерограммой сейсмическом воздействии по программе Plaxis 3D с варьированием одного из семи исходных параметров на шести уровнях. Используется модель Мора-Кулона. Получены значения коэффициентов запаса устойчивости склона, формирующие шесть векторов. Для каждой пары векторов "исходные данные-результаты" вычисляются два числовых показателя близости: обратная величина евклидового расстояния меж$ ду векторами, увеличенного на 1; косинус угла между векторами, а также показатель близости, определенный с использованием метода корреляционного анализа "серых систем" Грэя. Показано, что результаты ранжирования чувствительности коэффициентов устойчивости склона получены с использованием "косинусного" показателя подобия и метода корреляционного анализа "серых систем", согласуются между собой и несколько отличаются от результатов, полученных с помощью "Евклидова" показателя подобия. Степень влияния исходных данных в порядке уменьшения: угол внутреннего трения грунта, ширина берм и сцепление; далее со значительным отставанием следуют удельный вес, высота откоса, угол заложения и максимальное ускорение.


Литература


C. Y. Wang, F. Zhang, and W. D. Han, "Sensitivity analysis of slope stability influence factors based on BP neural network," Adv. Mater. Res., 1010-1012, 1544-1547 (2014a).

Z. G. Qian, A. J. Li, W. C. Chen, A. V. Lyamin, and J. C. Jiang, "An artificial neural network approach to inhomogeneous soil slope stability predictions based on limit analysis methods," Soils Found., (2019). DOI:10.1016/j.sandf.2018.10.008.

S. J. Peng, Y. Ma, J. D. Wang, and W. L. Xie, "Application of fuzzy information optimization technology on analysis of loess landslide stability," Appl. Mech. Mater., 321-324, 2389-2395 (2013).

B. Hassan and M. Hani, "Application of rock mass classification systems to rock slope stability assessment: A case study," Journal of Rock Mechanics and Geotechnical Engineering, 9, 993-1009 (2017).

J. B. Peng, S. K. Wang, Q. Y. Wang, J. Q. Zhuang, W. L. Huang, X. H. Zhu, Y. Q. Leng, and P. H. Ma, "Distribution and genetic types of loess landslides in China," J. Asian Earth Sci., 170, 329-350 (2019).

Y. X. Wu, Y. F. Gao, N. Zhang, and D. Y. Li, "Simulation of spatially varying ground motions in V-shaped symmetric canyons," J. Earthq. Eng., 20(6), 992-1010 (2016).

K. R. Tarun, "Governing factors influence on rock slope stability-Statistical analysis for plane mode of failure," Journal of King Saud University-Science (2019). CC BY-NC-ND license: http://creativecommons.org/license/by-nc-nd/4.0/.

C. Y. Wang, F. Zhang, and W. D. Han, "A study on the application of RBF neural network in slope stability of Bayan Obo east mine," Adv. Mater. Res., 1010-1012, 1507-1510 (2014b).

A. Aril, K. Tetsuya, and S. Yoshinori, "Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia," Geomorphology, 318, 101-111 (2018).

H. L. Liu, H. Q. Lu, H. W. Li, and H. Song, "Application of new method based on fuzzy comprehensive assessment for stability of landslide," Journal of PLA University of Science and Technology (Natural Science Edition), 14(1), 84-88 (2013).

G. Y. Wang, J. Li, F. F. Ye, and G. R. Sun, "Fuzzy comprehensive assessment stability of vegetated slope with 3D geomat protection using cloud model," The Open Civil Engineering Journal, 11, 70-81 (2017).

S. L. Zhang, M. X. Zhang, S. W. Ji, Q. Chen, and K. J. Luo, "Loose media slope stability evaluation based on fuzzy analysis," J. Shanghai Jiaotong Univ., 49(7), 1035-1039+1045 (2015).

Z. S. Zhang, S. H. Wang, and F. L. Wang, "Comprehensive assessment of rock slope stability based on spatial block identification," Journal of Northeastern University (Natural Science), 39(6), 896-901 (2018).

Y. J. Wu, B. Chen, H. Ruan, G. J. Wang, and W. X. Nie, "Stability evaluation of hillside under the transmission tower based on improved attribute recognition model," Chin. J. Rock Mech. Eng., 35(Suppl. 1), 3138-3146 (2016).

Y. Liu, J. L. Du, and Y. H. Wang, "An improved grey group decision-making approach," Appl. Soft Comput., 76, 78-88 (2019).

Y. H. Su, Z. D. Luo, and X. Li, "Gray correlation analysis method for cut-and fill roadbed slope stability based on uniform experiment," Rock Soil Mech., 33(8), 2259-2264 (2012).

L. Kong, Z. F. Zhang, Q. M. Yuan, Q. Y. Liang, Y. H. Shi, and J. Q. Lin, "Multi-factor sensitivity analysis on the stability of submarine hydrate-bearing slope," China Geology, 1(3), 367-373 (2018).

D. Q. Li, Z. Y. Yang, Z. J. Cao, and L. M. Zhang, "Area failure probability method for slope system failure risk assessment," Comput. Geotech., 107, 36-44 (2019).

Q. Y. Liu and X. N. Wu, "Review on determining index weights in multi-factor evaluation," Knowledge Management Forum, 2(6), 500-510 (2017).

W. J. Xiao and Y. C. Duan, "Qos-aware cloud service composition based on time series," Computer Engineering & Science, 36(11), 2061-2066 (2014).

P. P. Xia, Li. Zhang, and F. Z. Li, "Learning similarity with cosine similarity ensemble," Inf. Sci., 307, 39-52 (2015).

X. S. Lu, Q. H. You, and X. D. Li, "Automatical assessment of fetal status based on fuzzy theory and euclidean distance," J. Biomed. Eng., 33(3), 436-441+447 (2016).

Y. Xie, S. H. Zhou, Y. Y. Xiao, K. S. Kulturel, and A. Konak, "A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics," Eur. J. Oper. Res., 256(1), 26-38 (2018).

N. Rafic, B. Alain, M. Bassam, and A. Hassan, "On the positive semi-definite property of similarity matrices," Theor. Comput. Sci., 755, 13-28 (2019).

Z. Hossein, M. Alireza, S. Hossein, and B. Bagher, "Non-speaker information reduction from cosine similarity scoring in i-vector based speaker verification," Comput. Electr. Eng., 48, 226-238 (2015).

Q. Li, K. Li, X. You, S. H. Bu, and Z. B. Liu, "Place recognition based on deep feature and adaptive weighting of similarity matrix," Neurocomputing, 199, 114-127 (2016).

Q. Yan, Y. Ding, J. J. Zhang, Y. Xia, and C. H. Zheng, "A discriminated similarity matrix construction based on sparsesubspace clustering algorithm for hyperspectral imagery," Cogn. Syst. Res., 53, 98-110 (2019).

B. Fabio, B. Domenico, B. Sonia, and S. Giovanni, "Computing inter-document similarity with context semantic analysis," Inform. Syst., 80, 136-147 (2019).

I. Lázár and A. Hajdu, "Segmentation of retinal vessels by means of directional response vector similarity and region growing," Comput. Biol. Med., 66, 209-221 (2015).

Y. Q. Chen, B. Perozzi, and S. Skiena, "Vector-based similarity measurements for historical figures," Inform. Syst., 64, 163-174 (2017).

T. E. Wang, J. Q. Shen, and C. J. Lin, "Iterative algorithm based on a combination of vector similarity measure and B-spline functions for particle analysis in forward scattering," Opt. Laser Technol., 91, 13-21 (2017).

W. Joubert, J. Nance, D. Weighill, and D. Jacobson, "Parallel accelerated vector similarity calculations for genomics applications," Parallel Comput., 75, 130-145 (2018).

N. R. Smalheiser, A. M. Cohen, and G. Bonifield, "Unsupervised low-dimensional vector representations for words, phrases and text that are transparent, scalable, and produce similarity metrics that are not redundant with neural embeddings," J. Biomed. Inform., 90, 103096 (2019). DOI:10.1016/j.jbi.2019.103096.

K. L. Xing, S. Achiche, and J. R. R. Mayer, "Five-axis machine tools accuracy condition monitoring based on volumetric errors and vector similarity measures," Int. J. Mach. Tool. Manu., 138, 80-93 (2019).

Y. H. Su, Z. D. Luo, X. L. He, and C. Dong, "Failure mechanism analysis of subgrade slopes based on uncertainty," Chin. J. Geotech. Eng., 35(9), 1612-1618 (2013).

P. Zhang, W. Y. Yao, G. B. Liu, and P. Q. Xiao, "Experimental study on soil erosion prediction model of loess slope based on rill morphology," Catena, 173, 424-432 (2019).

Z. L. Zhang, T. Wang, S. R. Wu, H. M. Tang, and C. Y. Liang, "Seismic performance of loess-mudstone slope in Tianshui-Centrifuge model tests and numerical analysis," Eng. Geol., 222, 225-235 (2017).

S. W. Paravita and T. Daniel, "Analysis of geotextile reinforced road embankment using PLAXIS 2D," Procedia Eng., 125, 358-362 (2015).

A. Ahmed, H. Dahlia, and H. Ashraf, "The effect of pile parameters on the factor of safety of piled-slopes using 3D numerical analysis," HBRC Journal, 13, 277-285 (2017).

M. S. Khan, S. Hossain, A. Ahmed, and M. Faysal, "Investigation of a shallow slope failure on expansive clay in Texas," Eng. Geol., 219, 118-129 (2017).

G. Q. Zhao, Y. Y. Yang, H. Q. Zhang, and G. L. Zhang, "A case study integrating field measurements and numerical analysis of high-fill slope stabilized with cast-in-place piles in Yunnan, China," Eng. Geol., 253, 160-170 (2019).

S. H. Ye, G. W. Fang, and Y. P. Zhu, "Model establishment and response analysis of slope reinforced by frame with prestressed anchors under seismic considering the prestress," Soil Dyn. Earthq. Eng., 122, 228-234 (2019).

R. B. J. Brinkgreve, E. Engin, and W. M. Swolfs, PLAXIS 2D 2012 User’s Manual, Plaxis BV, Delft (2012).

R. B. J. Brinkgreve, E. Engin, and W. M. Swolfs, PLAXIS 3D 2013 User’s Manual, Plaxis BV, Delft (2013).

Y. X. Wu, Y. F. Gao, D. Y. Li, T. G. Feng, and A. H. Mahfouz, "Comparison of the spectral representation method to simulate spatially variable ground motions," J. Earthq. Eng., 18, 458-475 (2014).


Ссылки

  • На текущий момент ссылки отсутствуют.