ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВОДОПРОНИЦАЕМОСТИ УПЛОТНЕННОГО ЛЕССА Experimental study on the permeability behavior of compacted loess

GUO Ye XIA, НИ ВАНКУИ, КОУ ЖЕНТАО, ЧЖАО ЯН, НИ ЙОНПЕНГ

Аннотация


В западных районах Китая лессовые грунты широко используются при строительстве автомобильных дорог и фундаментов зданий. Их гидравлическая проводимость является важным инженерным параметром, но, однако, существует очень ограниченное число исследований в этом направлении. Авторами проведена серия испытаний на уплотненных лессовых грунтах для оценки влияния плотности в сухом состоянии и содержания воды на водопроницаемость. Результаты испытаний показывают, что гидравлическая проводимость грунта постепенно уменьшается с увеличением содержания влаги и плотности в сухом состоянии. Это явление вызвано уменьшением кумулятивного объема или коэффициента пористости, что подтверждается результатами ртутной интрузионной порометрии и сканирующей электронной микроскопии. Предложена новая математическая модель прогнозирования коэффициента гидравлической проводимости в уп$ лотненных лессовых грунтах, выраженная в виде функции содержания влаги и коэффициента пористости.


Литература


P. Delage, Y. J. Cui, and P. Antoine, "Geotechnical problems related with loess deposits in Northern France," Proceedings of International Conference on Problematic Soils, Famagusta, N. Cyprus., 2005.

I. Smalley, K. O'Hara-Dhand, and J. Kwong, "China: materials for a loess landscape," Catena., 117, 100–107 (2014).

K. Yates, C. H. Fenton, and D. H. Bell, "A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury, South Island, New Zealand," Engineering Geology., 236, 11-21 (2017).

Q. F. Lv, C. R. Chang, B. H. Zhao, and B. Ma, "Loess soil stabilization by means of sio2 nanoparticles," Soil Mechanics and Foundation Engineering., 54 (6), 409-413 (2018).

J. M. Sun, "Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau," Earth and Planetary Science Letters., 203, 845–859 (2002).

B. P. Wen, and Y. J. Yan, "Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China," Engineering Geology., 168, 46-58 (2014).

P. Li, W. L. Xie, R. Y. S. Pakba, and S. K. Vanapalli, "Microstructural evolution of loess soils from the Loess Plateau of China," Catena., 173, 276–288 (2019).

H. J. Yu, "A new exploration on the origin of loess in the shelf area of the eastern China seas," Quaternary Sciences., 4, 366-372 (1999).

X. M. Fang, J. J. Li, and V.D.V.Rob, "Discussion on the formation age of loess in western Qinling and its relationship with provenance area," Chinese Science Bulletin., 44 (7), 779-782 (1999).

W. M. Ye, Y. J. Cui, and Y. Huang, Collapsibility of loess and its discrimination criteria. Chinese Journal of Rock Mechanics and Engineering., 25(3), 550-556 (2006).

Z. Liu, F. Y. Liu, F. L. Ma, M. Wang, and X. H. Bai, "Collapsibility, composition, and microstructure of loess in China," Can. Geotech. J., 53, 673-686 (2016).

T. X. Wang, J. Lu, J. F. Zhang, "Experimental study on permeability coefficient of artificially compacted unsaturated loess considering influence of density," Chinese Journal of Rock Mechanics and Engineering., 25(11), 2364-2368 (2018).

H. Wang, T. L. Li, and Y. K. Fu, "Determining permeability function of unsaturated loess by using instantaneous profile method," Shuili Xuebao., 45(8), 997-1003 (2014).

W. W. Chen, W. Liu, J. Wang, G. P. Sun, W. J. Wu, and X. Q. Hou, "Prediction of coefficient of permeability of unsaturated loess with different seepage durations," Chinese Journal of Geotechnical Engineering., 40, 22-26 (2018).

Z. Q. Hu, Z. J. Shen, and D. Y. Xie, "Constitutive model of structural loess," Chinese Journal of Rock Mechanics and Engineering., 24(4), 565-569 (2005).

X. Q. Pang, "Rheological constitutive model of compacted loess based on creep test," Journal of Railway Science and Engineering., 14(6), 1206-1216 (2017).

F. Chu, and S. J. Shao, "Experimental study on constitutive model of structural Q3 loess in Longdong area based on concept of disturbance state," Chinese Journal of Rock Mechanics and Engineering., 37(9), 2180-2188 (2018).

AFNOR, "Geotechnical investigating and testing, Laboratory testing of soils, Part 5: Incremental loading odometer test," XP CEN ISO/TS 17892-5 (2005).

American Society for Testing and Materials (ASTM), Standard test methods for liquid limit, plastic limit, and plasticity index of soils. Soil and Rock, West Conshohocken, PA. D4318 (2010).

American Society for Testing and Materials (ASTM), Standard test methods for specific gravity of soil solids by water pycnometer. Soil and Rock, West Conshohocken, PA., D4318 (2014) .

American Society for Testing and Materials (ASTM), Standard Test Method for Particle-size Analysis of Soils. Soil and Rock, West Conshohocken., D422-63 (2007).

American Society for Testing and Materials (ASTM), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM International, West Conshohocken, Pennsylvania., D1557-12 (2012). .

American Society for Testing and Materials (ASTM), Standard Practice for Classification of Soils for Engineering Purposes. Unified Soil Classification System, Philadelphia., D2487(2010).

Y. F. Deng, A. M. Tang, Y. J. Cui, X. P. Nguyen, X. L. Li, and L. Wouters, "Laboratory Hydro-Mechanical Characterisation of Boom Clay at Essen and Mol," Physical and Chemistry of Earth., 36, 1878-1890 (2011).

Y. F. Deng, Y. J. Cui, A. M. Tang, X. L. Li, and X. Sillen, "An experimental study on the secondary deformation of Boom clay," Applied Clay Science., 59-60, 19-25 (2012).

D. Penumadu, and J. Dean, "Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry," Canadian Geotechnical Journal., 37(2), 393-405 (2000).

E. W. Washburn, "Note on a method of determining the distribution of pore sizes in a porous material," Proc Natl Acad Sci U S A., 7(4), 115 (1921).

S. Diamond, "Pore size distributions in clays," Clay and Clay Minerals., 18(1), 7-23 (1970).

G. Mesri, and R. E. Olson, "Mechanisms controlling the permeability of clays," Clay and Clay Minerals., 19(3): 151–158 (1971).

A. M. Samarasinghe, Y. H. HUANG, and V. P. DRNEVICH, "Permeability and consolidation of normally consolidated soils," Journal of Geotechnical Engineering., 108(6), 835–850 (1982).


Ссылки

  • На текущий момент ссылки отсутствуют.