ДИНАМИЧЕСКИЙ КОНТРОЛЬ И ТЕХНОЛОГИЯ "УЛУЧШЕНИЯ" ГРУНТА ПРИ ПРОХОДКЕ ПЕСЧАНО-ГАЛЕЧНИКОВЫХ ОТЛОЖЕНИЙ ЩИТОМ БОЛЬШОГО ДИАМЕТРА Soil improvement technology and dynamic control of large diameter shield in sandy cobble stratum

Weikang Cheng, Wanjun Ye, Xuanrong Zheng

Аннотация


Приводятся результаты экспериментов по проходке тоннеля в песчано-галечниковых отложениях механизированным щитом диаметром 6 м с пеногрунтовым пригрузом. Предложена и реализована на практике методика «улучшения» характерного для подземного строительства в Чэнду песчано-галечникового грунта с использованием комплексной добавки, сочетающей бентонит и пенообразователь. Исследования показали целесообразность подбора концентрации пенообразующих добавок и бентонитовой суспензии в зависимости от размеров гальки в песчаном слое и
при обводненности грунта. При этом используется «динамическое управление» щитом, регулирующее схему «улучшения» грунта в зависимости от среднего крутящего момента ротора. Показано, что соответствующие рекомендации повысили эффективность строительства, обеспечив повышение скорости проходки и снижение осадок.

Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering”, vol.59, No.5


Литература


ZHANG Meng, SUN Cheng. Technologies for Large-diameter Earth Pressure Balance Shield Boring in Complex Strata[J]. Tunnel Construction, 2015(S2):157-161.

XI Zhendong, HU Linhao, ZHANG Shuxiang, ZHANG Bo. Soil Conditioning for Large-diameter Shield Boring in Water-rich Sandy Pebble Strata: a Case Study on a Shield-Bored Section of Chengdu Metro[J], Tunnel Construction, 2021,41(01):37-43.

Wei Longgang, Research on settlement control of large diameter shallow buried houses under large diameter shield[D], Chang’an University, 2017.

Zhen, Z., Ge, X. & Zhang, J. Soil Conditioning Tests on Sandy and Cobbly Soil for Shield Tunneling.KSCE J Civ Eng 25,1229–1238(2021).https://doi.org/10.1007/s12205-021-0921-0.

Yao, Q., Di, H., Ji, C. et al.Ground collapse caused by shield tunneling in sandy cobble stratum and its control measures. Bull Eng Geol Environ 79, 5599–5614(2020).https://doi.org/10.1007/s10064-020-01878-9.

Zhao, B., Liu, D. & Jiang, B. Soil Conditioning of Waterless Sand–Pebble Stratum in EPB Tunnel Construction. Geotech Geol Eng 36, 2495–2504(2018).https://doi.org/10.1007/s10706-018-0478-y.

Qu, T., Wang, S. & Hu, Q. Coupled Discrete Element-Finite Difference Method for Analysing Effects of Cohesionless Soil Conditioning on Tunneling Behaviour of EPB Shield. KSCE J Civ Eng 23, 4538–4552 (2019).https://doi.org/10.1007/s12205-019-0473-8.

Zhang, Z.X., Zhang, H. & Yan, J.Y. A case study on the behavior of shield tunneling in sandy cobble ground. Environ Earth Sci 69, 1891–1900 (2013).https://doi.org/10.1007/s12665-012-2021-4.

Qingfeng Wang; Liang Feng; Xiyong Wu; Deping Guo; Yingwei Xi. Correlating EPB Chengdu Metro Settlement Data with Analysis Predictions in Sandy Cobble Stratum Xin Liao; Presented at Jiannan Chen Geo-Congress 2019 : Soil Erosion, Underground Engineering, and Risk Assessment . 2019.

Shaoming Liao; Lisheng Chen. Comparative Study on Suitability of EPB Machine in Typical Sandy Cobble Ground in China Chihao Cheng. Presented at Zhe Zhou Transportation Research Congress 2016: Innovations in Transportation Research Infrastructure. 2018.

Xiongyu Hu, M.ASCE; Chuan He, Ph.D., M.ASCE; Gabriel Walton, Ph.D., M.ASCE; Yong Fang, Ph.D., M.ASCE; and Guanghui Dai, M.ASCE. Laboratory Model Test of EPB Shield Tunneling in a Cobble-Rich Soil.

Xing Liang ; Fei Ye; Aohui Ouyang; Xin Han; and Xianzhuo Qin. Theoretical Analyses of the Stability of Excavation Face of Shield Tunnel in Lanzhou Metro Crossing beneath the Yellow River.

Modification of clay adhesion to improve tunnelling excavation Giovanni Spagnoli, Martin Feinendegen, and David Rubinos Proceedings of the Institution of Civil Engineers-Ground Improvement 2013 166:1,21-31.

Effects of dispersing foams and polymers on the mechanical behaviour of clay pastes R. ZUMSTEG, M. PLöTZE, and A.M. PUZRIN Géotechnique 2013 63:11, 920-933.

Bentonite slurry infiltration into sand: filter cake formation under various conditions. Tao Xu and Adam Bezuijen Géotechnique 2019 69:12, 1095-1106.

Y. Wei, Y. Yang, and T. Qiu. Effects of Soil Conditioning on Tool Wear for Earth Pressure Balance Shield Tunneling in Sandy Gravel Based on Laboratory Test. Journal of Testing and Evaluation49, no.4 (2021):2692-2706.https://doi.org/10.1520/JTE20180851.

H. Baghali, H. Chakeri, M. Sharghi, and D. Dias, Effect of Soil Moisture and Granulometry on Soil Conditioning for EPB-TBM Tunneling: Case Study. Journal of Testing and Evaluation49, no.1,(2021):355-371.https://doi.org/10.1520/JTE20190847.

Mingfeng Lei, Dayong Lin, Qiyou Huang, Chenghua Shi & Linchong Huang (2020). Research on the construction risk control technology of shield tunnel underneath an operational railway in sand pebble formation: a case study. European Journal of Environmental and Civil Engineering. 24:10, 1558-1572, DOI: 10.1080/19648189.2018.1475305.

Tingjin Liu, Honghao Huang, Zhenrui Yan, Xinwei Tang & Hongyuan Liu (2020) A case study on key techniques for long-distance sea-crossing shield tunneling. Marine Georesources & Geotechnology. 38:7, 786-803,DOI:10.1080/1064119X.2019.1630871.

Zhang, J., Peng, H. & Sun, Y. Experimental Investigation of Nanomaterial Regulating the Mechanical Properties of Grouting Concrete. Iran J Sci Technol Trans Civ Eng (2021).

Wang, Z.Y., Jiang, Y.S., Wang, J. et al. Relationship Between Geological Characteristics and Key Parameters of Large-Diameter EPB Shields. Soil Mech Found Eng 57, 256–264 (2020). https://doi.org/10.1007/s11204-020-09663-2.

Samoilov, V.P. Shields for the construction of large tunnels in sandy ground. Soil Mech Found Eng 1, 40–44 (1964). https://doi.org/10.1007/BF01704030

Hsiung, BC.B. Numerical Investigation of the Three-Dimensional Performances of a Shield-Machine-Bored Tunnel in Loose Sands. Soil Mech Found Eng 56, 427–435 (2020). https://doi.org/10.1007/s11204-020-09626-7.

Hao, X., Sun, Z., Zhao, Y. et al. Characteristics of Ground Surface Settlement of Double-Line Adjacent Metro Construction in Sandy Cobble Stratum: A Case Study of Beijing Airport Line. KSCE J Civ Eng 25, 4443–4456 (2021). https://doi.org/10.1007/s12205-021-0057-2.

Yao, Q., Ji, C., He, C. et al. A hybrid experiment/theory method for soil conditioning in sandy cobble strata with large cobbles and boulders. Bull Eng Geol Environ 80, 8189–8209 (2021). https://doi.org/10.1007/s10064-021-02418-9.

He, C., Feng, K., Fang, Y. et al. Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata. J. Zhejiang Univ. Sci. A 13, 858–869 (2012). https://doi.org/10.1631/jzus.A12ISGT6

He, S., Li, C., Wang, D. et al. Surface Settlement Induced by Slurry Shield Tunnelling in Sandy Cobble Strata—A Case Study. Indian Geotech J 51, 1349–1363 (2021). https://doi.org/10.1007/s40098-021-00543-6.

Zhao Q., Li D., Liu Z., Wang C. (2021) Shield Treatment Technology for Large-Size Pebble Stratum. In: Hong K. (eds) Shield Tunneling Technology in Hard-Soft Uneven Stratum and Extremely-Soft Stratum. Key Technologies for Tunnel Construction under Complex Geological and Environmental Conditions. Springer, Singapore. https://doi.org/10.1007/978-981-16-1383-8_4.

Zhen, Z., Ge, X. & Zhang, J. Soil Conditioning Tests on Sandy and Cobbly Soil for Shield Tunneling. KSCE J Civ Eng 25, 1229–1238 (2021). https://doi.org/10.1007/s12205-021-0921-0.

Zhao, B., Liu, D. & Jiang, B. Soil Conditioning of Waterless Sand–Pebble Stratum in EPB Tunnel Construction. Geotech Geol Eng 36, 2495–2504 (2018). https://doi.org/10.1007/s10706-018-0478-y.


Ссылки

  • На текущий момент ссылки отсутствуют.