Открытый доступ Открытый доступ  Ограниченный доступ Платный доступ или доступ для подписчиков

ОПЫТ ПРИМЕНЕНИЯ НАНОЧАСТИЦ ДЛЯ СНИЖЕНИЯ РИСКОВ РАЗЖИЖЕНИЯ ГРУНТА Review on the application of nanoparticles to mitigate liquefaction risks

Shumsun Nahar Siddique, Jian Deng, Eltayeb Mohamedelhassan

Аннотация


Приведен обзор опубликованных работ и рекомендации по дальнейшим исследованиям возможности применения наночастиц (в частности, углеродных нанотрубок, коллоидного кремнезема и бентонита) для уплотнения песка с целью снижения рисков, связанных с возможностью разжижения. По сравнению со стандартными армирующими волокнами, углеродные нанотрубки позволяют создавать композиты, которые значительно прочнее. Коллоидный кремнезем и бентонит могут успешно противостоять разжижению песка благодаря своим реологическим свойствам.


Полный текст:

PDF

Литература


C.R. Yao, B. Wang, Z.-Q. Liu, H. Fan, F.-H. Sun and X.-H. Chang, “Evaluation of liquefaction potential in saturated sand under different drainage boundary conditions-an energy approach”, J Mar. Sci. Eng. 7, 411 (2019).

A. Krishna, “Mitigation of liquefaction hazard using granular piles”, J Geotech. Earthq. Eng. 2, 44–66 (2011).

A. Porbaha, K. Zen and M. Kobayashi, “Deep mixing technology for liquefaction mitigation”, J Infrastruct. Syst. 5, 21–34 (1999).

T. Shenthan, R. Nashed, S. Thevanayagam and G. Martin, “Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction”, Earthq. Eng. Vib. 3, 39–50 (2004).

S. Yasrobi and M. Biglari, “The use of dynamic compaction in liquefaction hazards mitigation at reclaimed lands in Assalouyeh petro-chemical complex—Iran”, Soft Soil Eng. 587–593 (2007).

P. Gallagher, A. Pamuk and T. Abdoun, “Stabilization of liquefiable soils using colloidal silica grout”, J Mater. Civ. Eng. 19, 33–40 (2007).

E. Vik, L. Sverdrup, L. Kelley, R. Storhaug, A. Beitnes, K. Boge, G. Grepstad and V. Tveiten, “Experiences from environmental risk management of chemical grouting agents used during construction of the romeriksporten tunnel”, Tunn. Undergr. Space Technol. 15,4, 369–378 (2000).

Y. Huang and Z. Wen, “Recent developments of soil improvement methods for seismic liquefaction mitigation”, Nat. Hazards 76, 927–1938 (2015).

W. Cao, “Nanostructures and nanomaterials-synthesis, properties and applications”, Imperial College Press, London (2004).

R. Yonekura and M. Kaga, “Current chemical grout engineering in Japan, Proc., Grouting”, Soil Improvement and Geosynthetics, ASCE, New York (1992).

P. Persoff, J. Apps, G. Moridis and J. Whang, “Effect of dilution and contaminants on sand grouted with colloidal silica”, J Geotechn. Geoenviron. Eng. 125, 461–469 (1999). https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(461)

P. Gallagher, “Passive site remediation for mitigation of liquefaction risk”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Virginia (2000).

C. El Mohtar, A. Bobet, M. Santagata, V. Drnevich and C Johnston, “Liquefaction mitigation using bentonite suspensions”, ASCE J Geotech. Geoenviron. Engng. 139, 1369–1380 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000865

C. El Mohtar, A. Bobet, M. Santagata, V. Drnevich and C. Johnston, “Cyclic response of sand with thixotropic pore fluid”, Geotechnical earthquake eng. and soil dyn. IV (eds D. Zeng, M. T. Manzari and D. R. Hiltunen). Geotechnical Special Publication 181 (CD-ROM). Reston, VA, USA: ASCE (2008).

D. Rugg, J. Yoon, H. Hwang and C. El Mohtar, “Undrained shearing properties of sand permeated with a bentonite suspension for static liquefaction mitigation”, Geofrontiers 2011 Adv. Geotech. Eng. Geotechnical Special Publication 211, 677686 (CD-ROM) (2011). https://doi.org/10.1061/41165(397)70

K. Chong, “Nano science and engineering in mechanics and materials”, Rev. Adv. Mater. 5, 110–116 (2003).

M. Berger, “Nanotechnology; the future is tiny”, Royal Society of Chemistry, 1st edition (2016).

S. Sathurusinghe, W. Herath, H. Subhashini and K Herath, “Stress concentrations in single walled carbon nanotube reinforced metal and polymer composites under uniaxial loading”, J Adv. Struct. Geotechn. Eng. 1, 58–60 (2012).

Y. Ando, “The preparation of carbon nanotubes”, Fuel Sci. Technol. 2, 173–80 (1994).

W. Maser, A. Benito and M. Martinez, “Production of carbon nanotubes the light approach”, Carbon 40, 1685–95 (2002).

C. Oncel and Y. Yurum, “Carbon nanotube synthesis via the catalytic CVD method, a review on the effect of reaction parameters, Fullerene, Nanotubes”, Carbon Nanostruct. 14, 17–37 (2006).

B. Fakhim, A. Hassani, A Rashidi and P. Ghodousi, “Predicting the impact of multiwalled carbon nanotubes on the cement hydration products and durability of cementitious matrix using artificial neural network modeling technique”, Sci. World J. ID 103713 (2013).

M. Arabania, A. Haghib and Y. Moradic, “Evaluation of mechanical properties improvement of clayey sand by using carbon nanotubes”, In: Proceedings of the 4th International Conference on Nanostructures (ICNS4). Kish Island, I.R. Iran, pp. 1567–1569 (2012).

M. Morsy, S. Alsayed and M. Aqel, “Hybrid effect of carbon nanotube and nano-clay on physicomechanical properties of cement mortar”, Constr. Build. Mater. 25, 145–149 (2011).

V. Dhawan, S. Dhoat, A. Williams, A. Dimarco, S. Pal, A. Forbes, A. Tobías, P. Martinez-Martin and K. Chaudhuri, “The range and nature of sleep dysfunction in untreated Parkinson’s disease (PD). A comparative controlled clinical study using the Parkinson’s disease sleep scale and selective polysomnography”, J Neurol. Sci. 25, 158–62 (2006).

S. Li, T. Anderson, M. Green, J. Maul and J. Canas-Carrell, “Polyaromatic hydrocarbons (PAHs) sorption behavior unaffected by the presence of multi-walled carbon nanotubes (MWNTs) in a natural soil system”, Environ. Sci. Process. Impacts 15, 1130–1136 (2013).

Z. Tong, M. Bischoff and L. Nies, “Impact of fullerene (C60) on a soil microbial community”, Env. Sci. Technol. 41, 2985–2991 (2007).

A. Johansen, A. Pedersen and K. Jensen, “Effects of C60 fullerene nanoparticles on soil bacteria and protozoans”, Env. Toxicol. Chem. 27, 1895–1903 (2008).

S. Chang, L. Liu and S. Asher, “Preparation and properties of tailored morphology, monodisperse colloidal silica cadmium sulfide nanocomposites”, J Am. Chem. Soc. 116, 6739–6744 (1994).

C. Chapa-Gonzalez, A. Pinon-Urbina and P. Garcia-Casillas, “Synthesis of controlled-size silica nanoparticles from sodium metasilicate and the effect of the addition of PEG in the size distribution”, Mater. Basel 11, 510 (2018).

G. Dietler, C. Aubert and D. Cannell, “Gelation of colloidal silica”, Phys. Rev. Lett. 57, 3117 (1986).

Y. Liu, C. Hsu and W. Wei, “Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica”, Polymer 44, 5159–5167 (2003).

J. Martin, J. Wilcoxon and D. Schaefer, “Fast aggregation of colloidal silica”, Phys. Rev. 41, 4379 (1990).

R. Yonekura and M. Miwa, “Fundamental properties of sodium silicate-based grout”, Presented at the Eleventh Southeast Asia Geotechnical Conference, Singapore, pp. 439–444 (1993).

P. Gallagher and J. Mitchell, “Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand”, Soil Dyn. Earthq. Eng. 22, 1017–1026 (2002).

P. Gallagher, A. Pamuk, A. Koch and T. Abdoun, “Centrifuge Modeling of Passive Site Remediation”, in: Proc., 7th United States National Conf. on Earthquake Engineering (7NCEE): Urban Earthquake Risk. Presented at the Earthquake Engineering Research Institute, Oakland, Calif. (2002).

P. Gallagher and A. Koch, “Model testing of passive site stabilization: A new grouting technique, Grouting and Ground Treatment”, In: Proc., 3rd Int. Conf., ASCE, Reston, Va. pp. 1478–1489 (2003).

V. Taboada, “Centrifuge modeling of earthquake-induced lateral spreading in sand using a laminar box”, (Ph.D. Dissertation), Rensselaer Polytechnic Institute, Troy, NY (1995).

H. Liao, C. Huang and B. Chao, “Liquefaction resistance of a colloid silica grouted sand, Grouting and ground treatment”, In: Proc. 3rd Int. Conf., ASCE. Reston, Va., pp. 1305–1313 (2003).

T. Kodaka, F. Oka, Y. Ohno, T. Takyu and N. Yamasaki, “Modelling of cyclic deformation and strength characteristics of silica treated sand”, In: Proc., 1st Japan–US Workshop on Testing, Modelling, and Simulation (GSP 143) 205–216. Reston, VA: ASCE (2005).

J. Diaz-Rodriguez, V. Antonio-Izarraras, P. Bandini and J. Lopez-Molina, “Cyclic strength of a natural liquefiable sand stabilized with colloidal silica grout”, Can. Geotech. J 45, 1345–1355 (2008).

P. Gallagher, C. Conlee and K. Rollins, “Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk”, J Geotech. Geoenviron. Eng. 133, 186–196 (2007).

K. Andrianopoulos, G. Agapoulaki and A. Papadimitriou, “Simulation of seismic response of passively stabilized sand”, Geotech. Res. 3, 40-53 (2016).

I. Towhata, “Geotechnical earthquake engineering, Geomechanics and geoengineering”, edited by W Wu and RI Borja, 697. Berlin: Springer (2008).

D. Porcino, V. Marciano and R. Granata, “Static and dynamic properties of a lightly cemented silicate-grouted sand”, Can. Geotech. J 49, 1117–1133 (2012).

A. Vranna and T. Tika, “The mechanical behavior of a clean sand stabilized with colloidal silica”, In Proc., 16th European Conf. on Soil Mechanics and Geotechnical Eng. London: ICE Publishing. London (2015).

G. Agapoulaki and A. Papadimitriou, “Rheological Properties of Colloidal Silica Grout for Passive Stabilization Against Liquefaction”, J Mater. Civ. Eng. 30, 04018251 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002377

S. Shen, Z. Wang, J. Yang and C. Ho, “Generalized approach for prediction of jet grout column diameter”, J Geotech. Geoenviron. Eng. 139, 2060–2069 (2013).

M. Santagata, A. Bobet, A. El-howayek, F. Ochoa-Carnejo and J. Sinfield, “Building a nanostructure in the pore fluid of granular soils”, London, Taylor, and Francis (2015).

P. Gallagher and Y. Lin, “Colloidal silica transport through liquefiable porous media”, J Geotech. Geoenviron. Eng. 135, 1702–1712 (2009).

P. Gallagher and Y. Lin, “Column testing to determine colloidal silica transport mechanisms”, Geo-Frontiers Congress 2005: Innovations in Grouting and Soil Improvement, Reston, VA: ASCE, (2005).

Y. Lin, “Colloidal silica transport mechanisms for passive site stabilization of liquefiable soils”, Ph.D. Dissertation, Drexel Univ. (2006).

Y. Lin and P. Gallagher, “Three-meter column testing of colloidal silica transport through porous media”, In: Ground Modification and Seismic Mitigation (GSP 152), 417-424. Reston, VA: ASCE. Presented at the GeoShanghai International Conference 2006 (2006).

P. Gallagher and S. Finsterle, “Physical and numerical model of colloidal silica injection for passive site stabilization”, Vadose Zone J 3, 917–925 (2004).

M. Hamderi and P. Gallagher, “Pilot-scale modeling of colloidal silica delivery to liquefiable sands”, Soils Found. 55, 143–153 (2015).

A. Koch, “Model testing of passive site stabilization”, Ph.D. Dissertation, Drexel Univ. (2002).

M. Noll, D. Epps, C. Bartlett and P. Chen, “Pilot field application of a colloidal silica gel technology for in situ hot spot stabilization and horizontal grouting”, In: 7th National Outdoor Action Conf., National Groundwater Asso., 207219. Westerville, OH: Water Well Journal Publishing Com. (1993).

C. Conlee, “Dynamic properties of colloidal silica soils using centrifuge model tests and a full-scale field test”, Ph.D. Dissertation, Drexel Univ. (2010).

DuPont, “Ludox colloidal silica: properties, uses, storage and handling”, Product Information, 19, Wilmington, DE: DuPont (1997).

P. Greenwood and J. Otterstedt, “Some Important, fairly new uses of colloidal silica/silica sol, Fundamentals and Applications, Chapter; 57”, 1st ed. Publisher: Taylor and Francis, Editors: Bergna, HE and Roberts, WO (2005).

Z. Darvishi and A. Morsali, “Synthesis and characterization of nano bentonite by sonochemical method”, Ultrason. Sonochem. 18, 238–242 (2011).

W. Nesse, “Introduction to mineralogy”, New York: Oxford University Press (2000).

W. Sutherland, “Wyoming Bentonite”, Wyoming State Geological Sur. Retrieved 12 Jan 2021 (2014).

J. Jackson, “Bentonite, Glossary of geology”, 4th ed. American Geological Institute, Alexandria, Virginia (1997).

M. Abdou, A. Al-sabagh and M. Dardir, “Evaluation of Egyptian bentonite and nano-bentonite as drilling mud”, Egypt J Pet. 22, 53–59 (2013).

A. Teplitskiy, R. Gee and R. Kourmaev, “Application of physical-chemical properties of bentonite utilized in construction”, as viewed through the TRIZ Prism (2005).

A. Perry, “Why bentonite clays are safe to ingest”, Bentonite clay info.com website (last access on June 16, 2021) (2019).

D. Anderson and P. Hoekstra, “Migration of Interlamellar Water During Freezing and Thawing of Wyoming Bentonite”, Soil Sci. Soc. Am. J. 29, 498–503 (1965).

T. Brown, N. Idoine, E. Raycraft, R. Shaw, S. Hobbs, P. Everett, E. Deady and T. Bide, “World Mineral Production 2012-16”, British Geological Survey, Nottingham, England (2016).

K. Bekkour, M. Leyama, A. Benchabane and O. Scrivener, “Time-dependent rheological behavior of bentonite dispersions: an experimental study”, J Rheol. 49, 1329–1345 (2005).

J. Durn, M. Ramos-Tejada, F. Arroyo and F. Gonzlez-Caballero, “Rheological and electrokinetic properties of sodium montmorillonite suspensions: I. Rheological properties and interparticle energy of interaction”, J Colloid Interf. Sci. 229, 107–117 (2000).

C. Harvey and G. Lagaly, “Industrial applications”, In: Bergaya, F., Lagaly, G. (Eds.), Handbook of Clay Science, 5B, 2nd ed. Elsevier (2013).

V. Kelessidis, C. Tsamantaki and P. Dalamarinis, “Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions”, Appl. Clay Sci. 38, 86–96 (2007).

S. Laribi, J. Fleureau, J. Grossiord and N. Kbir-Ariguib, “Effect of pH on the rheological behavior of pure and interstratified smectite clays”, Clay Min. 54, 29–37 (2006).

C. Malfoy, A. Pantet, P. Monnet and D. Righi, “Effects of the nature of the exchangeable cation and clay concentration on the rheological properties of smectite suspensions”, Clay Miner. 51, 656–663 (2003).

D. Penner and G. Lagaly, “Influence of anions on the rheological properties of clay mineral dispersions’, Appl. Clay Sci. 19, 131–142 (2001).

E. Tombacz and M. Szekeres, “Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes”, Appl. Clay Sci. 27, 75–94 (2004).

S. Abend and G. Lagaly, “Solgel transitions of sodium montmorillonite dispersions”, Appl. Clay Sci. 16, 201–227 (2000).

G. Lagaly and I. Dekany, “Chapter 8: Colloid Clay Science in Handbook of Clay Science. Part A: Fundamentals”, In: Bergaya F, Lagaly G (Eds.), Elsevier, Amsterdam (2013).

L. Michot, I. Bihannic, K. Porsch, S. Maddi, C. Baravian, J. Mougel and P. Levitz, “Phase diagrams of Wyoming Na-montmorillonite clay. Influence of particle anisotropy”, Langmuir 20, 10829-10837 (2004).

K. Seed, “Rankine Lecture: Liquefaction and flow failure during earthquakes”, Geotechnique 43, 351–415 (1993).

K. Ishihara, “Soil behaviour in earthquake Geotechnics”, Oxford Science Publication, Clarendon Press, Oxford, UK (1996).

K. Tokimatsu and Y. Yoshimi, “Criteria of soil liquefaction with SPT and fines content”, Presented at the 8th World conference on earthquake engineering., San Francisco, CA: Prentice Hall (1984).

K. Ishihara and J. Koseki, “Discussion of cyclic shear strength of fines-containing sands”, Presented at the Proceedings of the 12th international conference on soil mechanics and foundation engineering, Rio de Janeiro, Brazil, p. 101-106 (1989).

S. Yasuda, K. Wakamatsu and H. Nagase, “Liquefaction of artificially filled silty sands”, In Ground failures under seismic conditions (eds S. Prakash and P. Dakoulas), New York, NY, USA: ASCE. Geotech. Spec. Publ. 44, 91–104 (1994).

I. Gratchev, K. Sassa, V Osipov and V. Sokolov, “The liquefaction of clayey soils under cyclic loading”, Eng. Geol. 86, 70–84 (2006).

C. El Mohtar, A. Bobet, V. Drnevich, C. Johnston and M. Santagata, “Pore pressure generation in sands with bentonite: from small strains to liquefaction”, Geotechnique 64, 108–117 (2014).

J. Clarke, “Investigation of Time-Dependent Rheological Behavior of Sodium Pyrophosphate Bentonite Suspensions”, MSc thesis, Purdue University, West Lafayette, Indiana (2008).

M. Santagata, A. Bobet, A. El-howayek, F. Ochoa-Carnejo and J. Sinfield, “Building a nanostructure in the pore fluid of granular soils”, London, Taylor, and Francis (2015).

M. Santagata, J. Clarke, A. Bobet, V. Drnevich, C. El Mohtar, P. Huang and C. Johnston, “Rheology of concentrated bentonite dispersions treated with sodium pyrophosphate for application in mitigating earthquake-induced liquefaction”, Appl. Clay Sci. 99, 24–34 (2014).

R. Goh, Y. Leong and B. Lehane, “Bentonite slurries-zeta potential, yield stress, adsorbed additive and time-dependent behaviour”, Rheol. Acta. 50, 29–38 (2011).

G. Lagaly, “Principles of flow of kaolin and bentonite dispersions”, Appl. Clay Sci. 4, 105–123 (1989).

P. Shankar, J. Teo, Y. Leong, A. Fourie and M. Fahey, “Adsorbed phosphate additives for interrogating the nature of interparticles forces in kaolin clay slurries via rheological yield stress”, Adv. Powder Technol. 21, 380–385 (2010).

P. Mongondry, T. Nicolai and J. Tassin, “Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions”, J Colloid Interf. Sci. 275, 191–196 (2004).

J. Martin, J. Wilcoxon and D. Schaefer, “Fast aggregation of colloidal silica”, Phys. Rev. 41, 4379 (1990).

A. Witthoeft, M. Santagata and A. Bobet, “Numerical study of the effectiveness of bentonite treatment for liquefaction mitigation”, Presented at the Geotechnical special publication, Conference: GeoCongress 2012 (2012).


Ссылки

  • На текущий момент ссылки отсутствуют.