РАЗРАБОТКА ЭКСПЕРИМЕНТАЛЬНОЙ МОДЕЛИ СЛОИСТОГО МАССИВА ИЛИСТЫХ ГЛИН, ОБЛАДАЮЩИХ РЕОЛОГИЧЕСКИМИ СВОЙСТВАМИ An Experimental Predictive Model Development for Time-dependent Rheological Properties of Composite Strata Soil

Wei Huang, Bo Wu, Guowang Meng, Ning Liu, Huihao Chen, Zheng Deng

Аннотация


Изучались свойства ползучести илистой глины в зависимости от глубины залегания, для чего проводились экспериментальные исследования при различных уровнях нагрузки с использованием трехосного лабораторного оборудования. Разработаны модификации модели Кельвина для зависящего от времени деформационного поведения. Анализ показал удовлетворительную сходимость теоретических и экспериментальных результатов для типичных илистых глин Пекина (Китай).


Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering”, vol.61, No.4


Литература


Sun J. Geotechnical Material Rheology and Its Engineering Application, China Architecture & Building Press, Beijing, 1999.

AASHTO. Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials (AASHTO), 1993, Washington DC.

AASHTO. Standard Specification for Transportation Materials and Methods of Sampling and Testing, Part II Methods of Sampling and Testing 25th Edition. American Association of State Highway and Transportation Officials, 2005, Washington DC.

AASHTO T 190-09. Standard method of test for resistance R-value and expansion pressure of compacted soils. American Association of State Highway and Transportation Officials, 2014, Washington DC.

AASHTO T 307. Standard method of test for determining the resilient modulus of soils and aggregate materials. American Association of State Highway and Transportation Officials, 2014, Washington DC.

BS 1377 - 2, 3, Methods of Testing Soils for Civil Engineering Purposes, British Standard Institute, 1990, London.

Hu A., Sun B., Xie K. “Steady-state response of a saturated half space with an overlying dry layer subjected to a moving load”, Journal of Zhejiang University: Science A, 13(1), 2012, pp. 33-43.

Sun L.N., Liu Y., Zhang L.M. “Analysis on deformation of foundation excavation considering of time-space effect”, Applied Mechanics and Materials, v 291-294, 2013, pp. 1135-1139.

Gnanendran C.T., Manivannan G., Lo S.C.R. “Influence of using a creep, rate, or an elastoplastic model for predicting the behaviour of embankments on soft soils”, Canadian Geotechnical Journal, 43(2),2006, pp. 134-154.

Karim M.R., Gnanendran C.T., Lo S.C.R., et al. “Predicting the long-term performance of a wide embankment on soft soil using an elastic-viscoplastic model”, Canadian Geotechnical Journal, 47 (2), 2010, pp. 244-257.

Zhang W., Qian P.Y., Chen X.P., et al. “Application of rheological theory to excavation of deep foundation pit”, Journal of Wuhan University of Hydraulic and Electric Engineering, 36(2), 2003, pp 92-96.

Gao W.H., Yang L.D., Shen P.S. “Analysis of factors on time space effect of internal force and deformation for retaining structure of deep foundation pit under soft soil”, China Civil Engineering Journal, 34(5), 2011, pp. 90-96.

Bo M.W., Choa V., Wong K.S., et al. “Laboratory validation of ultra-soft soil deformation model”, Geotechnical and Geologi-cal Engineering, 29 (1), 2011, pp 65-74.

Chen X.P., Huang G.Y., Liang Z.S. “Study on soft soil properties of the pearl river delta”, Chinese Journal of Rock Mechanics and Engineering, 22(1), 2003, pp 137-141.

Liu W.T., Cao D.Z., Li H., et al. “Experimental study on creep behavior of marine clay in Shenzhen”, Industrial Construction, 41(7), 2011, pp 74-77.


Ссылки

  • На текущий момент ссылки отсутствуют.