ПРОГНОЗИРОВАНИЕ УСТОЙЧИВОСТИ ЗАБОЯ ПРИ ЩИТОВОЙ ПРОХОДКЕ ТОННЕЛЯ С ИСПОЛЬЗОВАНИЕМ МОДЕЛИ НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ Instability prediction model of shield tunnel face based on normal cloud-PSM
Аннотация
Приводятся результаты исследования влияния различных факторов, количественные характеристики которых имеют вероятностную природу, на устойчивость забоя при сооружении тоннелей с применением механизированных щитовых комплексов. Исследовано влияние десяти наиболее значимых факторов, связанных с геологией, окружающей средой и технологией проходки, что позволило рассматривать полученные результаты при разных комбинациях факторов в качестве комплексной оценки риска потери устойчивости забоя. Исследования выполнялись на трехмерных числовых моделях в предположении нормального распределения случайных действующих факторов. Предложено риски потери устойчивости забоя сгруппировать в пять классов, от высокого до низкого. Дается их описание и указываются защитные мероприятия для предотвращения риска или минимизации возможного ущерба. Тестирование предлагаемого метода оценки риска потери устойчивости забоя
для прогнозирования состояния тоннеля показало хорошую сходимость результатов моделирования с фактическими наблюдениями.
Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering”, vol.60, No.5
Литература
Pan, Q. & Dias, D. Three dimensional face stability of a tunnel in weak rock masses subjected to seepage forces. Tunnelling And Underground Space Technology 71, 555-566 (2018).
Xia, X., Li, H., Liu, Y. & Yu, C. A case study on the cavity effect of a water tunnel on the ground vibrations induced by excavating blasts. Tunnelling And Underground Space Technology 71, 292-297 (2018).
Xu, Z.H., Wu, J., Li, S.C., Zhang, B. & Huang, X. Semianalytical Solution to Determine Minimum Safety Thickness of Rock Resisting Water Inrush from Filling-Type Karst Caves. International Journal Of Geomechanics 18 (2018).
Senent, S. & Jimenez, R. A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse. Tunnelling And Underground Space Technology 47, 182-192 (2015).
P, C.R., S, Y.X. & J, T.L. Centrifugal model tests of tunneling face failure under seepage flow. Rock & Soil Mechanics 36, 225-229 (2015).
Jia-yan, Z., Xi-lin, L. & Feng-di, L. Numerical Simulation for Stability of Excavated Surface of Shield Tunnels under Water Level Condition. Technology of Highway and Transport, 86-89 (2014).
Chakeri, H. & Unver, B. A new equation for estimating the maximum surface settlement above tunnels excavated in soft ground. Environmental Earth Sciences 71, 3195-3210 (2014).
Yong-xue, B., Tai-yue, C., You-dao, L. & Yi, Z. Study on factors influencing face stability in shallow shield tunneling in sandy cobble strata. Journal of Railway 35, 115-121 (2013).
J, T.L., P, C.R. & S, Y.X. Centrifugal model tests on face stability of shield tunnels in dense sand. Chinese Journal of Geotechnical Engineering 35, 1830-1838 (2013).
Wei, Z., Jian-she, Q. & Ting-hao, L. Numerical study on face movement and collapse around shield tunnels in sand. Chinese Journal of Geotechnical Engineering 27, 897-902 (2005).
Ming-nian, W., Long-hai, W. & Jun-fu, L. Study of face stability of cobble-soil shield tunnelling at Chengdu metro. Rock and Soil Mechanics 32, 99-105 (2011).
Zhou, Y., He, C., Wang, Z. & Zhu, C. Study On Instability Mechanism and Control For Face of Soft Rock Tunnel. (2011).
Delisio, A. & Zhao, J. Review of the TBM performance in blocky rocks with potential face stability issues. (2013).
Wen-ting, H., Xi-lin, L. & Mao-song, H. Three-dimensional limit equilibrium solution of the support pressure on the shield face. Chinese Journal of Underground Space and Engineering 07, 853-866 (2011).
Xi-lin, L., Feng-di, L. & Mao-song, H. Three-dimensional numerical and analytical solutions of limit support pressure at shield tunnel face. Journal of Tongji University(Natural Science) 40, 1469-1473 (2012).
Lin-fang, S., Zhi-liang, W. & Gang, W. Three-dimensional analytical solution for passive limit support pressure during shield tunnelling. Modern tunnelling technology 51, 35-40 (2014).
Zhi-liang, W., Lin-fang, S. & Jian-bin, X. Three-dimensional upper bound solution of limit support pressure during shield tunnelling. Journal of Disaster Prevention and Mitigation Engineering 35, 348-353 (2015).
Hong, C., Ji-biao, Z. & Jian-jun, W. Safety evaluation indexes and method for traffic environment highway tunnels. Journal of Chang'an University (Natural Science Edition) 33, 54-61 (2013).
Jie-jin, C., Feng, Z. & Jun-sheng, Y. Fuzzy analytic hierarchy process for risk evaluation of collapse during construction of mountain tunnel. Rock and Soil Mechanics 33, 54-61 (2013).
Chi-xin, W. Calculation of evacuation time by the Monte Carlo method. Modern tunnelling technology 54, 144-148 (2017).
Yan, W. & Hong-wei, H. Hierarchical-Fuzzy Comprehensive Evaluation Method for Safety Assessment of Metro Tunnels. Chinese Journal of Underground Space and Engineering 24, 19-23 (2004).
Jian-kun, Z. & jian, W. Fault tree analysis of the collapse risk in rock Highway Tunnel. Chinese Journal of Underground Space and Engineering 4, 991-998 (2008).
H, E.H. Risk and risk analysis in rock engineering. Tunneling and Underground Space Technology 2 (1996).
Junjie, Z., Chifeng, L. & Dongan, Z. Risk assessment of shield tunnel construction cost using fuzzy fault tree. Chinese Journal of Geotechnical Engineering, 501-508 (2011).
Zihai, C., Jianjun, C. & Jianhui, Y. Risk analysis of tunnel shield machine driving in construction process based on fuzzy AHP. Chinese Journal Underground Space and Engineering 9, 1427-1432 (2013).
Zhen, H., Helin, F. & Jiabing, Z. Comprehensive evaluation model of shield tunnel construction risk based on cloud theory. Journal of Railway Science and Engineering 15, 298-306 (2018).
Helin, F., Zhen, H. & Hongwei, H. Health diagnosis method of shield tunnel structure based on cloud theory. Chinese Journal of Engineering, 155-162 (2017).
Jinping, H., Zhenzhao, L. & Yuqun, S. Weight question about comprehensive evaluating dam safety monitoring behavior. Engineering Journal of Wuhan University 34, 13-17 (2001).
Deyi, L. Knowledge representation in KDD based on linguistic atoms. Journal of Computer Science and Technology 12, 481-496 (1997).
Deyi, L. Knowledge representation and discovery based on linguistic atoms. Knowledge Based Systems 15, 431-440 (1998).
Yiyi, Z., Ruijin, L. & Lijun, Y. An assessment method for insulation condition of power transformer based upon cloud model. Transactions of China Electrotechnical Society 27, 13-20 (2012).
ben, X., Hualao, W. & Caichu, X. Study on comprehensive evaluation of shield tunnel structural defections. Chinese Journal of Underground Space and Engineering 6, 201-207 (2010).
Jinyu, H., Vol. Doctor (Southwest Jiaotong University, 2015).
Lintao, Y., Qinbang, P. & Feng, L. The risk assessment of mountain tunnel collapse is carried out by fuzzy comprehensive evaluation method. Journal of Highway and Transportation Research and Development, 236-238 (2017).
ZHAO Xin & Baonan, G. Statistical analysis of urban rail transit lines in 2018 China. Urban Mass Transit 22, 7-13 (2019).
Ссылки
- На текущий момент ссылки отсутствуют.