АНАЛИТИЧЕСКИЙ МЕТОД РЕШЕНИЯ ТРЕХМЕРНОЙ НЕОСЕСИММЕТРИЧНОЙ СМЕШАННОЙ ГРАНИЧНОЙ ЗАДАЧИ И ЕГО ПРИЛОЖЕНИЕ К РАСЧЕТУ ПРЯМОУГОЛЬНОЙ ПЛИТЫ НА УПРУГОМ ПОЛУПРОСТРАНСТВЕ An analytical method for solving 3D non-axisymmetry mixed boundary problem and its application in analysis of rectangle plate resting on an elastic half space

Li An Wang, Jianchang Zhao

Аннотация


Решается задача о плите на однородном упругом полупространстве под действием распределенной нагрузки с использованием теоремы ортогональности Гильберта и метода Шмидта. Предлагается метод решения трехмерной неосесимметричной смешанной краевой задачи. В качестве основной неизвестной величины берется контактное напряжение между плитой и фундаментом; затем для решения двойного интегрального уравнения используются преобразование Фурье и метод Шмидта. В результате получены поля смещений и напряжений всей системы. Результаты ис-
следования сопоставлены с существующими решениями. Представлено несколько численных примеров, демонстрирующих применимость на практике.

Полный текст статьи публикуется в английской версии
журнала «Soil Mechanics and Foundation Engineering” vol.59, No.2


Литература


Horvath, J.S., 1984. New subgrade model applied to mat foundations. ASCE. J. Geotech. Eng. 109, 1567-1587. https://doi.org/10.1016/0148-9062(84)91766-2.

ACI, 2002. Suggested analysis and design procedures for combined footings and mats. American Concrete Institute 336.2R-88.

Ömer Civalek, 2007. Nonlinear analysis of thin rectangular plates on Winkler–Pasternak elastic foundations by DSC–HDQ methods. Appl. Math. Model. 3(31), 606-624. https://doi.org/

1016/j.apm.2005.11.023.

Shojaeefard M.H., Mahinzare, M., Safarpour, H., Googarchin, H.S., Ghadiri, M., 2018. Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition. Appl. Math. Model. 61, 255-279. https://doi.

org/10.1016/j.apm.2018.04.015.

Li, Q.Y., Wu, D., Gao, W., Francis, T.L., Liu, Z.Y., Cheng, J., 2019. Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory. Eur. J. Mech. A Solid. 78, 1-14. https://doi.org/ 10.1016/j.

euromechsol.2019.103852.

Zuzana, D., 2017. New semi-analytical solution for a uniformly moving mass on a beam on a two-parameter visco-elastic foundation. Int. J. Mech. Sci. 127, 142-162. https://doi.org/10.1016/

j.ijmecsci.2016.08.025.

Zhang, Y., Liu, X.M., 2019. Response of an infinite beam resting on the tensionless Winkler foundation subjected to an axial and a transverse concentrated loads. Eur. J. Mech. A Solid. 77,

-15. https://doi.org/10.1016/j.euromechsol.2019.103819.

Selvadurai, A.P.S., 1977. Axisymmetric flexure of an infinite plate resting on a finitely deformed incompressible elastic half space. Int. J. Solids Struct. 13, 357-365. https://doi.org/

1016/0020-7683(77)90019-1.

Adewale, A.O., 2001. Application of the singularity function method to semi-infinite orthotropic rectangular plates on an elastic foundation. Int. J. Mech. Sci. 43, 2261-2279. https://doi.org/10.1016/S0020-7403(01)00042-X.

Borisovich, A., Dymkowska, J., Szymczak, C., 2005. Buckling and postcritical behaviour of the elastic infinite plate strip resting on linear elastic foundation. J. Math. Anal. Appl. 307,480-495. https://doi.org/10.1016/j.jmaa.2004.11.030.

Zhang, C.L., Wang, B., Zhu, Y.Z., 2017. Dynamic response of infinite plate on orthotropic half-plane medium under moving loads. Chinese J. Geot. Eng. 39, 352-358. https://doi.org/10.

/CJGE201702020.

Ai, Z.Y., Xu, C.J., Ren, P., 2018. Vibration of a pre-stressed plate on a transversely isotropic multilayered half-plane due to a moving load. Appl. Math. Model. 59, 728-738. https://doi.org/10.

/j.apm.2018.02.027.

Tseytlin, A.I., 1984. Applied methods of solving boundary value problems of structural mechanics. Stroyizdat, Moscow.

Jin, B., 1999. The vertical vibration of an elastic circular plate on a fluid-saturated porous half space. Int. J. Eng. Sci. 37, 379-393. https://doi.org/10.1016/S0020-7225(98)00073-1.

Bosakov, S.V., 2006. Ritz’s Method in the Contact Problems of the Theory of Elasticity. Belarusian National Technical University (BNTU), Minsk.

Tahouneh, V., Yas, M.H., 2014. Semianalytical solution for three-dimensional vibration analysis of thick multidirectional functionally graded annular sector plates under various boundary conditions. J. Eng. Mech. 140, 31-46. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000653.

Alinaghizadeh, F., Shariati, M., 2016. Geometrically non-linear bending analysis of thick two-directional functionally graded annular sector and rectangular plates with variable thickness resting on non-linear elastic foundation. Composites Part B. https://doi.org/10.1016/j.compositesb.

05.010.

Zecai, C., 1988. Rectangular plates resting on tensionless elastic foundation. J. Eng. Mech. 114, 2083-2092. https://doi.org/10.1061/(asce)0733-9399(1988)114:12(2083).

Aleksandrov, V.M., Pozharskogo, DA., 1998. Non classical spatial problems of mechanics of contact of interaction of elastic bodies. Factorial, Moscow.

Gradshteyn, I.S., Ryzhik, I.M., 1980. Table of Integrals, Series and Products. Academic Press, New York.

Erdelyi A. Tables of Integral Transforms. New York:McGraw-Hill,1954

Morse, P.M., Feshbach, H., 1958. Methods of Theoretical Physics. McGraw-Hill, New York.

Fraser, R.A., Wardle, L.J., 1976. Numerical analysis of rectangular rafts on layered foundations. Geotechnique, 26, 613–630. https://doi.org/10.1680/geot.1976.26.4.613.


Ссылки

  • На текущий момент ссылки отсутствуют.