РЕОЛОГИЧЕСКАЯ МОДЕЛЬ РАСШИРЕНИЯ АРГИЛЛИТА, ПОГРУЖЕННОГО В ВОДУ A time-dependent expansion model for mudstone submerged in water

Jingyu Liu, Qianli Zhang, Liyang Wang, Feng Chen, Pengcheng Wang, Xin Yan, Liuhui Guo

Аннотация


На основе реологической теории разработана модель расширения аргиллита. Модель подтверждена результатами испытания аргиллита на свободное расширение при боковых ограничениях. Объяснен физический смысл всех параметров модели. Предельная деформация при расширении аргиллита при затоплении определяется силой набухания и модулем упругости при постепенном расширении. Модель может быть использована для описания и прогнозирования расширения во времени аргиллита, погруженного в воду, и для обобщения определяющего соотношения Эйнштейна на нестабильное динамическое трехмерное воздействие.

Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering”, vol.61, No.1


Литература


Q. Fan, Expansive Rock and Engineering [in Chinese], Science Press, Beijing (2008).

L. Ma, “Research on low clay mineral mudstone expansion mechanism and influence for high-speed railway subgrade,” Ph. D. thesis, Lanzhou Jiaotong University, Lanzhou, China (2016).

J. Huder, and G. Amberg, “Sources in marl-clay and anhydrite,” Swiss J. Archit., 88 (43), 975-980 (1970).

H. Grob, “Swelling and heave in swess tunnels,” Bull. Inter. Ass. Engin. Geo., 14 (1), 55-60 (1975).

M. Gysel, “Design methods for structure in swelling rock,” Proc 6th Inter. Confer. Rock Mech., Rotterdam, 1, 377-381 (1987).

W. Wittke, and B. Pierau, “Foundation for the design and construction of tunnel in swelling rock,” Proc. 4th Inter. Congress Rock Mech, Rotterdam, 2 (1), 719-729 (1979).

H. Einstein, “Tunneling in swelling rock,” Underground Space, 4 (1), 51-61 (1979).

H. Einstein, “Suggested method for laboratory testing of argillaceous swelling rock,” Inter. J. Rock Mech., and Mining Sci. Geo-mechanics Abs., 6 (5), 415-426 (1989).

Q. Yang, J. J. Jiao, and L. M. Luan, “Study on a new method of confined swelling tests and swelling constitutive relationship for swelling rocks,” Chin. J. Geotech. Engin. [in Chinese], 1, 52-55 (2001).

Y. Qing, and J. Jiankui, “The determination of volume expansive properties in swelling clay,” China Civil Engin. Soc. Proc. Second Inter. Confer. Unsatured soils [in Chinese], Beijing: International Academic Publishers, 450-454 (1998).

X. Miao, C. Yang, and Z. Chen, “Humidity field theory in swelling rock mass,” Rock and Soil Mech., 4, 51-57 (1993).

X. Miao, “Coupling equation of humidity stress field theory,” Mech. Engin., 6, 22-24 (1995).

X. Miao, “Large deformation analusis of surrounding rock of a tunnel in swelling rock mass based on the humidity stress field theory,” J. Uni. Mining & Tech., 1, 58-63 (1995).

Z. Zhu, A. Zhang, and Y. Zhang, “Elastoplastic constitutive law of swelling rock based on humidity stress field theory,” Rock and Soil Mech., 5, 28-30 (2004).

X. Liu, S. Wang, and E. Wang, “Study on time-dependent swelling constitute relation of swelling rock,” J. Hydra. Engin., 2, 72-76 (2006).

M. Ji, F. Gao, Y. Gao, and H. Gu, “Study on time-depedent effect of calcareous mudstone expansion after infiltrated with water,” J. Uni. Mining & Tech., 39 (04), 511-515 (2010).

Q. Zuo, K. Chen, Y. Tan, S. Hu, and H. Wang, “A time-depedent constitutive model of the water-rich argillaceous slate surrounding a tunnel,” Rock and Soil Mech., 37 (05), 1357-1364 (2016).

X. Yin, Solid Mechanics [in Chinese], Seismological Press, Beijing, China (2011).

M. Cai, Rock mechanics and engineering [in Chinese], Science Press, Beijing, China (2011).

Ministry of Railway of the People’s Republic of China, Code for soil test of railway engineering [in Chinese], TB 10102-2010, China Railway Publishing House. Beijing, China (2010).


Ссылки

  • На текущий момент ссылки отсутствуют.