ДЕФОРМАЦИИ ВЕРТИКАЛЬНОЙ ПОДПОРНОЙ КОНСТРУКЦИИ, СВЯЗАННЫЕ С КОЛЕБАНИЯМИ ТЕМПЕРАТУРЫ, НА ОТСЫПАННОМ ЛЕССОВОМ СКЛОНЕ Deformation characteristics of the vertical support structure in a high-filled loess slope associated with temperature fluctuation: a case study in Lingbao, China
Аннотация
Описывается мониторинг деформаций (осадки, изгиб свай и растрескивание конструкции) заанкеренной стенки из свай с плитами высотой 40 метров, устроенной для удержания склона, сложенного насыпным лессовым грунтом. Использованы традиционные геодезические методы и современные технологии фиксации и измерения трещин в теле конструкции. Синхронно с измерениями деформаций выполнялись измерения температуры. Установлена согласованность изменений во времени измеряемых локальных деформаций и температурных колебаний, а также показано, что перемещения, прогнозируемые по простым соотношениям термоупругости, хорошо совпадают с измеренными величинами. Проанализированы факторы, влияющие на деформации конструкции стенки. Хотя температурные деформации, достаточно очевидно, не могут привести к потере устойчивости конструкции, они нарушают ее эксплуатационную пригодность, вызывая образование трещин и появление течи в теле стенки.
Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering” vol.58, No.5
Литература
R. W. Day, "Fill-Slope Failure and Repair." Journal of Performance of Constructed Facilities, 6(3), 161-168 (1992).
H. Murao, K. Nakai, T. Noda, and T. Yoshikawa, “Deformation/failure mechanism of saturated fill slopes due to resonance phenomena based on 1g shaking-table tests”, Canadian Geotechnical Journal, 55(11), 1668-1681 (2018).
G. Y. Li, W. Ma, Y. H. Mu, F. Wang, S. Z. Fan, and Y. H. Wu, “Effects of freeze-thaw cycle on engineering properties of loess used as road fills in seasonally frozen ground regions, north china”, Journal of Mountain Science, 14(2), 356-368 (2017).
G. X. Zhang, Z. X. Yuan, N. Wang, Z. Z. Zhang and P. Gao, “Dynamic response analysis of compaction loess subgrade”, Advanced Materials Research, 671-674(1), 202-208 (2013).
D. Kim and S. S. Kang, “Engineering properties of compacted loesses as construction materials”, Ksce Journal of Civil Engineering, 17(2), 335-341 (2013).
J. D. Wang, Y. J. Xu, Y. Ma, S. N. Qiao and K. Q. Feng, “Study on the deformation and failure modes of filling slope in loess filling engineering: a case study at a loess mountain airport”, Landslides, 15(12), 2423-2435 (2018).
Y. D. Zhou, C. Y. Cheuk and L. G. Tham, “Deformation and crack development of a nailed loose fill slope subjected to water infiltration”, Landslides, 6(4), 299-308 (2009).
Y. S. Lee, C. Y. Cheuk and M. D. Bolton, “Instability caused by a seepage impediment in layered fill slopes”, Canadian Geotechnical Journal, 45(10), 1410-1425 (2008).
G. Q. Kong and C. Zhang, “Field test and numerical simulation of deformation characteristics of embankment on soft ground under different filling speeds”, Rock and Soil Mechanics, 35(s2), 343-349 (2014).
J. X. Zeng, X. W. Hu, G. Luo, C. Z. Gu and Y. Zhang, “Numerical simulation of influence of high fill filling layer number on settlement of filling body”, Journal of Mountain Science, 30(4), 491-496 (2012).
C. H. Zhu, N. Li, M. Z. Liu and Y. F. Wei, “Spatiotemporal Laws of Post-Construction Settlement of Loess-Filled Foundation of Lüliang Airport”, Chinese Journal of Geotechnical Engineering, 35(2), 293-301 (2013).
T. K. Collins, “Debris flows caused by failure of fill slopes: early detection, warning, and loss prevention”, Landslides, 5(1), 107-120 (2008).
Y. M. Tang, Q. Xue, Z. G. Li and W. Feng, “Three modes of rainfall infiltration inducing loess landslide”, Natural Hazards, 79(1), 137-150 (2015).
Tu, X. B., A. K. L. Kwong, F. C. Dai, L. G. Tham and H. Min, “Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides”, Engineering Geology, 105(1-2), 134-150 (2009).
Bilgin Ömer, “Numerical studies of anchored sheet pile wall behavior constructed in cut and fill conditions”, Computers and Geotechnics, 37(3), 399-407 (2010).
L. C. Cao, X. Fu, Z. J. Wang, Y. Y. Zhou, F. C. Liu, J. J. Zhang, “Seismic responses of the steel-strip reinforced soil retaining wall with full-height rigid facing from shaking table test”, Journal of Mountain Science, 15(5), 1137-1152 (2018).
Rödelsperger Sabine, Läufer Gwendolyn, C. Gerstenecker and M. Becker, “Monitoring of displacements with ground-based microwave interferometry: ibis-s and ibis-l”, Journal of Applied Geodesy, 4(1), 41-54 (2010).
S. RöDelsperger, M. Becker, C. Gerstenecker, G. Läufer, K. Schilling and D.Steineck, “Digital elevation model with the ground-based sar ibis-l as basis for volcanic deformation monitoring”, Journal of Geodynamics, 49(3-4), 241-246 (2010).
Q. Tao, T. Gao, G. Liu and Z. Wang, “Effect of external digital elevation model on monitoring of mine subsidence by two-pass differential interferometric synthetic aperture radar”. Journal of Applied Remote Sensing, 11(2), 026037 (2017).
C. Atzeni, M. Barla, M. Pieraccini and F. Antolini, “Early warning monitoring of natural and engineered slopes with ground-based synthetic-aperture radar”, Rock Mechanics and Rock Engineering, 48(1), 235-246 (2015).
X. L. Liu, X. A. Zhao, K. L. Ding, L. Zhu, J. Ma, Y. Q. Dong and X. H. Tong, “Application of ground-based synthetic aperture radar technique for emergency monitoring of deep foundation excavation”, Journal of Applied Remote Sensing, 9(1), 096021 (2015).
J. G. Zheng, J. Cao, J. W. Zhang, Z. Liu, X. L. Liang, C. Yang and B. Li, “Analysis of influencing factors of high loess-filled foundations based on centrifugal model tests”, Chinese Journal of Rock Mechanics and Engineering, 38(3),560-571 (2019).
J. H. Jiang and Y. S. Yuan, “Action spectrum of temperature in natural climate environment and prediction of temperature response in concrete”, The 6th International Conference on Mining Science & Technology, 444-450 (2009).
L. K. Li. Structural Mechanics. Higher Education Press, Beijing, China (2004).
Ссылки