ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА ВОДОСТОЙКОСТЬ УПЛОТНЕННОГО ЛЕССА Experimental Study on the Effect of High Temperature on the Water Stability of Compacted loess in Yangling

Lu Zhang, Hui Heng Fan, Juan Xiu Yang, Ce Gao, Wei Jia Liu

Аннотация


Анализируется водостойкость уплотненного лесса после термической обработки при температурах 100...900 °C. Проведены испытания на дезинтеграцию обработанного лесса при степени уплотнения 84%...100%. После термической обработки при температурах 400°C и ниже лесс распадался в воде, а при > 500°C не распадался. Для количественного описания водостойкости термически обработанного грунта использовали коэффициент водостойкости (отношение прочности на одноосное сжатие во влажном и сухом состояниях). На водостойкость влияли как температура, так и степень уплотнения. При той же степени уплотнения время распада увеличивалось, а количество дезинтегрированного грунта уменьшалось с повышением температуры обработки. При температуре обработки 400°C или менее время распада увеличивалось, а количество грунта уменьшалось с увеличением уплотнения при той же температуре обработки. Для заданной степени уплотнения коэффициент водостойкости увеличивался с повышением температуры обработки и лишь незна-
чительно изменялся с увеличением уплотнения при температурах 500°C или более. 

Полный текст статей публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering” vol.59, No.1

High temperature treatment could change engineering properties of soil. In this study, the water stability of compacted Yangling loess  after high temperature treatment was analyzed. The relationships between different temperature from 100 ℃ to 400 ℃ and disintegration time, disintegration rate, and different compaction degree from 84 % to 100% and disintegration time, disintegration rate were delineated by disintegration tests, respectively. Different disintegration characteristics under factors of treatment temperature and compaction degree were clarified. The relationships between the water stability coefficient with different temperature from 500 ℃ to 900 ℃ and the water stability coefficient with different compaction degree from 84 % to 100% was obtained by unconfined compressive strength test. The results showed that the water stability was greatly affected by high temperature and compaction degree. Disintegration time increased and disintegration rate decreased with treatment temperature increased under same compaction degree or with compaction degree increased under same high temperature, thus the resistance to disintegration was enhanced. Water stability coefficient increased with high temperature increased under same compaction degree. With compaction degree increased, water stability coefficient variation was less than 0.2, but overall water stability coefficient of small compaction degree was slightly higher than that of big compaction degree.

Литература


.E. Gimeno-Garcia, V. Andreu and J. L. Rubio, “Spatial patterns of soil temperatures during experimental fires,” Geoderma, 118 (1-2), 17-38 (2004).

.S. Yang, “Systematic study on soil stabilizers in county and country road,” Thesis, Hunan University, Changsha, China (2005).

.C. C. Liu. “Study on improvement of super-wet soil in Lake Road,” Thesis, Central South University, Changsha, China (2007).

.Y. Yu, “Study of physical and engineering mechanical performance of improved Xigeda Strata,” Thesis, Southwest University of Science and Technology, Mianyang, China (2010).

.P. V. Verdes and J. Salgado, “Changes induced in the thermal properties of Galizian soils by the heating in laboratory conditions,” J. Therm. Anal. Calorim., 104 (1), 177-186 (2011).

.Л. В. Gontcharova, “Superfrequency electromagnetic field thermal stabilization of loess,” Subg. Eng., (05), 82-86 (1990).

.P. Y. Tan and G. X. Xu, “Thermal stabilization of heating wire on collapsible loess,” Subg. Eng., (05), 113-114 (2008).

.M. Z. Sun and Q. Y. Liang, Manual of soil reinforcement method [in China]. China Railway Publishing House, 1983.

.D. Zhang, “Study on elevated temperature sintering treatment of silty soil in Dalian area,” Thesis, Dalian Maritime University, Dalian, China (2016).

.J. C. Li and W. P. Tian, “Experiment of compacted loess disintegration,” J. Chongqing jiaotong Uni., 24 (5), 74-77 (2005).

.J. E. Wang, W. Xiang and R. N. Bi, “Experimental study of influence of matric suction on disintegration of unsaturated remolded loess,” Rock Soil Mech., 32 (11), 3258-3262 (2011).

.Z. Y. Xia, L. Zhang, P. H. Niu, Y. Z. Liang, W.J. Hu, W. N. Xu, “Effects of dry density, initial water content, and slope gradient on the disintegration characteristics of purple soil,” Sci. Soil Water Conserv., 15 (1), 121-127 (2017).

.Z. K. Liu, “Study on the influence of cave and soil cave on building foundation in Karst Region,” Dissertation, Central South University, Changsha, China (2004).

.J. C. Li, S. F. Cui and W. P. Tian, “Erosion characteristic of road slope and test of soil disintegration,” J. Chang'an Uni. (Nat. Sci.), 27 (1), 23-26 (2007).

.A. Ren, “Experimental study on new expansive soil modifier,” Thesis, Hohai University, Nanjing, China (2008).

.H. K. Zhang, “Study on highway landslide treatment technology of expansive soil in southern Shaanxi,” Thesis, Chang'an University, Xi’an, China (2008).

.L. J. He and X. Y. Tang, “Experimental study of expansive soil reinforced by HEC,” Yellow river, 32 (9), 148-149 (2010).

.B. T. Tian, “Experimental research on the disintegration charateristics of expandable tuff,” Thesis, Changsha University of Science & Technology, Changsha, China (2012).

.Y. Zhao, “Study on the rock-soil characteristics of shear strength and distintergration of granite collapse mound in southestrern hubei,” Thesis, Huazhong Agricultural University, Wuhan, China (2014).

.X. B. Liao, Q. Wang, Q. Z. Ma, Y. Weng, Z.M. Cai, “On water-physical property of hard clay at coast of Cameroon,” Port Waterway Eng., 488 (2), 15-19 (2014).

.B. A. Huang, “Discussions on orgin, decision methods and prevention measures of soil cave,” Architect. eng. technoligy design, (10), 2187-2188 (2015).

.Y. W. Li, “Study on road subgrade defect analysis and preventive treatment in Loess Area,” Thesis, Chang'an University, Xi’an, China (2001).

.Y. L. Li, “Study on slope stability and prevention measures of loess slope,” Thesis, Chang'an University, Xi’an, China (2005).

.X. A. Li, R. Q. Huang and J. B. Peng, “Experimental research on disintegration of loess,” Chin. J. Rock Mech. Eng., 28 (S1), 3207-3213 (2009).

.N. Q. Wang, Q. T. Wang, Q. Xue and X.L. Liu, “Experimental Study of Static Disintegration on Unsaturated Soil,” Applied Mech. Mat., 580-583, 68-72 (2014).


Ссылки

  • На текущий момент ссылки отсутствуют.