АНАЛИЗ УСТОЙЧИВОСТИ ГЛИНИСТЫХ СКЛОНОВ НА КАРСТОВЫХ ГОРНЫХ ПОРОДАХ ПРИ ЦИКЛИЧЕСКОМ ЗАМАЧИВАНИИ An Arc-Tangent Failure Surface for Stability Analysis of Karstic Red-clay Slopes under Dry-Wet Cycles

Kaisheng Chen, Tongyan Pan

Аннотация


Представлены результаты исследований устойчивости склонов, подстилаемых карстовыми горными породами и сложенных особыми глинистыми грунтами («красная глина»), которые подвержены растрескиванию при замачивании с последующим высушиванием. На основе физического моделирования и обследования природных склонов даны предложения по расчету коэффициента устойчивости склонов при воздействии нескольких циклов замачивания и высушивания. По результатам анализа выделена наиболее опасная форма оползневого тела. Поверхность скольжения принимается линейной и параллельной поверхности склона по контакту глин, нарушенных трещинообразованием при циклическом замачивании, с ненарушенными глинами, и круглоцилиндрической – у подножия склона. Описанная поверхность скольжения используется в предлагаемом аналитическом методе оценки устойчивости, основанном традиционно на определении соотношения удерживающих и сдвигающих сил, с учетом снижения прочности красных глин и увеличения сдвигающих сил от давления воды при цикличном замачивании. В качестве основной рекомендации при проектировании на подобных склонах указано на необходимость защиты глин от замачивания. 


Полный текст статьи публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering” vol.58, No.5


Литература


Liu, T. Y., Wang, J. Z., Wu, L. J. (2015). Study on failure mechanism and stability calculation method of red clay slope. Highway Traffic Science and Technology (Application Technology Edition), 11(8): 47-49.

Wu, L. J., Zhong, F. L., Wu, X. C., Yang, S. J (2003). Study on road made by high liquid limit soil. Chinese Journal of Geotechnical Engineering, 25(2): 193-195.

Qian, Z. Y. (2007). Main technical problems and countermeasures of railway engineering in red clay area. Chinese Railways, (2): 41-45.

Chen, N., Wu, L. J., Zhou, Y., Deng, J. (2016). Failure mechanism of shallow layer of red clay slope and stability evaluation method. Journal of Highway and Transportation Research and Development. 33(3): 37-42.

Chen, K. S. (2017). Three Axis Tests of Compacted Laterite under Dry-wet Circulation. Highway, 62(11): 215-220.

Zou, X. Q., Gao, Y. T., Jin, A. B., Wang, K., Meng, X. Q. (2017). Study on red clay slope instability mechanism and the sensitivity of influencing factors. Mining Research and Development, 37(1): 78-81.

Nong, C. S, Mo, W. Y. (2017). Analysis on deformation failure mechanism of red clay slope in an expressway in Guangxi. Traffic science and technology in the West, (4): 24-27.

Kong, L. W., Chen, L. H. (2012). Advancement in the techniques for special soils and slopes. China Civil Engineering Journal, 45(5): 141-161.

Luo, L. (2018). Study on stability analysis of red clay slope in Western of Shanxi. Highway Traffic Science and Technology (Application Technology Edition), 12(2): 133-135.

Chen, N., Zhou, Y., Wu, L. J. (2016). Appropriate protection and reasonable ratio of clay slopes in Guizhou province. Transportation Science & technology, (2): 121-124.

Zhang, G., Qian, J. Y., Wang, R. (2001). Centrifuge model test study of rainfall-induced deformation of cohesive soil slopes. Soil and Foundations, 51(2): 297-305.

Zhang, L. Y., Huang, H. H., Zheng, J. J. (2014). Slope stability analysis of red clay in Guizhou expressway. Journal of Guizhou University (Natural Sciences), 31(3): 105-110.

Yasuzawa, Y., Saito, Y. (1993). Vibration Analysis of Stiffened Plate in Contact with Water Using Finite Elements and Boundary Elements. Transaction of the West-Japan Society of Naval Architects, 42(86): 147-160.

Ling, H., Hoe, I., Ling, M. (2012). Centrifuge model simulations of rainfall-induced slope instability. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 138: 1151–1157.

Ling, H., Hutchinson, D. J., Diederichs, M. S. (2011) Characteristics of large landslides insensitive clay in relation to susceptibility, hazard, and risk. Canadian Geotechnical Journal, (48): 1212–1232.

Yan, C., Yu, J. (2011). On the Achievements and Prospects for the Methods of Computational Fluid Dynamic. Advances in Mechanics, 41(5): 562-589.

Tan, L. R and Kong, L. E. 2001. Fundamental Property and microstructure model of red clay. Chinese Journal of Geotechnical Engineering, 23(4):458-462.

Zhu, J. Q., Gong, Y. and Hu, D.W. 2016. Research on shrinkage characteristics of red clay with drying and wetting cycles. Journal of Glaciology and Geocryology. 38(4):1028-1035.

Zhu, J. Q., Yi, L. and Gong, Y. 2016. Swelling shrinkage water sensitive properties of Guizhou red clay. Journal of Hunan University of Science &Technology. 31(4):35-39.

Li, X. D., Deng, X. A. and Yin, L. H. 2016. Research on strength and compaction performance of red clay in Mengzi, Yunnan province. Subgrade Engineering. 2016 (2):41-44.

Cao, H. R., Li, X. M. and Fan, Y. J. 2012. Experimental study of pavement performances of lime treated laterite soil considering drying-wetting cycle path. Rock and Soil Mechanics. 33(9):2619-2624.

Lin, L. P., He, J. Q. and Luo, W 2015. .Relationship between shear strength and water content for unsaturated compacted high limit laterite. Natural Science Journal of Xiang tan University. 37(2):61-68.

Gong, Y. and Chen, H. F. 2019. Description on Research Status of Red Clay. Subgrade Engineering. 2019(01):47-53. [doi:10.13379/j.issn.1003-8825.2019.01.10]

Tu, X. B, Kwong, A. K. L., Dai, F. C. (2009). Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall induced landslides Engineering Geology, 105(1-2): 134-150.

N, C. W. W., Zhan, L. T., Bao, C. G. (2003). Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltrationl. Geotechnique, 53(2): 143-157.

Rahaedjo, H., Lee, T. T., Leong, E. C., Rezaur, R. B. (2005). Response of a residual soil slope to rainfall. Canadian Geotechnical Journal, 42(2): 340-351.

Quinn, P. E., Diederichs, M. S., Rowe, R. K. (2011) A new model for large landslides in sensitive clay using a fracture mechanics approach, Canadian Geotechnical Journal, (28)1151–1162.

Yin, Z. Z, Xu, B. (2011). Slope stability of expansive soil under fissure influence. Chinese Journal of Geotechnical Engineering, 33(3): 454-459.

Yin, Z. Z, Yuan,J. P., Wei,J., Cao,X. S., Liu,H. Q., Xu,B. (2012). Influences of fissures on slope stability of expansive soil. Chinese Journal of Geotechnical Engineering, 34(12): 2155-2161.

Kenkmann, T., Hergarten, S., Kuhn, T., & Wilk, J. (2016). Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation. Meteoritics & Planetary Science, 51(8), 1519-1533.


Ссылки

  • На текущий момент ссылки отсутствуют.