ДИНАМИЧЕСКИЙ АНАЛИЗ СТАЛЬНЫХ РЕЗЕРВУАРОВ НА ЖЕСТКОМ ГРУНТЕ Dynamic Analysis of Aboveground Steel Storage Tanks over Stiff Soil

Tarek Nageeb Salem, Hassan Mohamed Maaly, Ahmed Mohammed Abdelbaset

Аннотация


Анализируются расчеты на сейсмические воздействия стальных резервуаров для хранения нефти с различным соотношениями сторон, опирающихся на жесткий глинистый грунт, с использованием нормативных процедур API650-2014 и численного моделирования методом конечных элементов в программном комплексе ADINA-2017. Указывается, что кодекс API-650 имеет недостатки, особенно в части учета работы грунта под резервуарами, и требует доработки в некоторых конкретных случаях.
Полный текст статей публикуется в английской версии журнала
«Soil Mechanics and Foundation Engineering” vol.59, No.1

API-650 (2014) is one of the renowned codes for designing steel storage tanks due to seismic vibrations. Although, the code has wide range of applications, a lot of parameters including; hoop stresses, axial compressive stresses, sloshing and elephant-foot buckling need more specific studies. In this paper, open top steel oil storage tanks rest on stiff clay soil are studied using both API650-2014 procedures and numerical FEM simulation using ADINA-2017 software. Unanchored tanks with different aspect ratios (H/D) are numerically studied and analyzed, and the results are compared with API-650 procedures. The main result of this research is that the soil under the tank has an enormous effect on the behavior of the tanks in both static and dynamic stages especially on hydrostatic pressure of fluid and static hoop stresses in the tank shell. It is also indicated that API-650 has some shortages especially in estimating sloshing height magnitude. For these reasons, the code guidelines may need more investigations in some specific cases. In addition, it is noticed that the response spectrum method, which API code depended on, gave different results when compared with time history analysis.

Литература


Chang, J.I., and Lin, C.C., (2006), “A Study of Storage Tank Accidents”, Journal of Loss Prevention in the Process Industries, 19(1), 51-59.

Cho, K.H., and Cho, S.Y., (2007), “Seismic Response of Cylindrical Steel Considering Fluid-Structure Interaction”, Steel Structures, 7(2), 147-152.

Spritzer, J.M., and Guzey, S., (2017), “Nonlinear Numerical Evaluation of Large Open-Top Aboveground Steel Welded Liquid Storage Tanks Excited by Seismic Loads”, Thin-Walled Structures, 119, 662–676.

Hosseinzadeh, N., Kazem, H., Ghahremannejad, M., Ahmadi, E., and Kazem, N., (2013), “Comparison of API650-2008 Provisions with FEM Analyses for Seismic Assessment of Existing Steel Oil Storage Tanks”, Journal of Loss Prevention in the Process Industries 26(4), 666-675.

Ozdemir, Z., Souli, M., and Fahjanc, Y.M., (2010), “Application of Nonlinear Fluid–Structure Interaction Methods to Seismic Analysis of Anchored and Unanchored Tanks”, Engineering Structures, 32(2), 409–423.

API STANDARD, (2014), “Welded Tanks for Oil Storage”, 1220 L Street, NW, Washington, D.C: American Petroleum Institute.

ASCE/SEI7-05, (2005), “Minimum Design Loads for Buildings and Other Structures”, American Society of Civil Engineers.


Ссылки

  • На текущий момент ссылки отсутствуют.