ХАРАКТЕРИСТИКИ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ ПРИ РАЗВИТИИ ТРЕЩИН В УВЛАЖНЕННОМ ПЕСЧАНИКЕ Infrared Radiation Characteristics During Crack Development in Water-Bearing Sandstone

Kewang Cao, Qiupeng Yuan, Guangxiang Xie, Yanxia Shi

Аннотация


Описаны испытания на одноосное сжатие образцов песчаника при монотонном нагружении с синхронной регистрацией изменений терморадиационных и тензометрических параметров. Показано влияние степени водонасыщенности образцов на информативность измерений вариаций параметров сопутствующего ИК излучения. Показано, что обработка синхронных записей термо-радиационных и тензометрических параметров позволяет отслеживать динамику развития процессов разрушения геоматериалов. Критические напряжения породы при инициировании трещины и разрушении показывают отрицательную логарифмическую связь с соответствующими порогами изменения ИК излучения с коэффициентами корреляции выше 0,90.

Полный текст статьи публикуется в английской версии журнала
"Soil Mechanics and Foundation Engineering" vol. 58, No.3.


Литература


X.X. Miu, H. Pu, and H. B. Bai, “Study on the principle of key layer and its application in water-retaining coal mining,” J. China. U. Min. Techno., 37, NO.1, 1-4 (2008).

Q. Wu, and E. T. Guan, “Discussion on emergency rescue plan of coal mine water disaster,” J China Coal Soc., 31, NO.4, 409-413 (2006).

H. Lan, J.G. Yao, H. X. Zhang, and N. Z. Xu, “Development and application of mining damage constitutive model of jointed rock mass based on FLAC~(3D),” Chin. J. Rock. Mech. Eng., 27, NO.3, 572-579 (2008).

F. T. Freund, A. Takeuchi, B.W. S. Lau, A. Al-Manaseer, C.C. Fu, N.A. Bryant, and D. Ouzounov, “Stimulated infrared emission from rocks: assessing a stress indicator,” Eearth., 2, NO.1, 7-16 (2007).

I. L. Yachnev, V. A. Penniyaynen, S. A. Podzorova, I. V. Rogachevskii, and B. V. Krylov, “Possible mechanism of infrared radiation reception: the role of the temperature factor,” Tech. Phys., 63, NO.2, 303-306 (2018).

V.I. Sheinin, and D. I. Blokhin, “Features of thermomechanical effects in rock salt samples under uniaxial compression,” J. Min. Sci., 48, NO.1, 39-45 (2012).

S. Mineo, and G. Pappalardo, “The Use of Infrared Thermography for Porosity Assessment of Intact Rock,” Rock. Mech. Rock. Eng., 49, NO.8, 1-13 (2016).

M. C. He, “Physical modeling of an underground roadway excavation in geologically 45° inclined rock using infrared thermography,” Eng. Geol., 121, NO.3, 165-176 (2011).

G. Pappalardo, S. Mineo, S. P. Zampelli, and T. E. Matikas, “InfraRed Thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses,” Int. J. Rock. Mech. Min. Sci., 83, 182-196 (2016).

X. M. Sun, H. C. Xu, M. C. He, and F. Zhang, “Experimental investigation of the occurrence of rockburst in a rock specimen through infrared thermography and acoustic emission,” Int. J. Rock. Mech. Min. Sci., 93, 250-259 (2017).

F. Zhang, X. L. Zhang, Y. J. Li, Z. G. Tao, W. F. Liu, and M. C. He, “Quantitative description theory of water migration in rock sites based on infrared radiation temperature,” Eng. Geol., 241, 64-75 (2018).

Y. X. Zhao, Y. D. Jiang, “Acoustic emission and thermal infrared precursors associated with bump-prone coal failure,” Int. J. Coal. Geol., 83, NO. 4, 11–20 (2010).

L. X. Wu, S. J. Liu, Y. H. Wu, and C.Y. Wang, “Precursors for rock fracturing and failure—Part I: IRR image abnormalities,” Int. J. Rock. Mech. Min. Scis., 43, NO.3, 473-482 (2006).

L. Wu, S. Liu, Y. Wu, and C. Y. Wang, “Precursors for rock fracturing and failure—Part II: IRR T -Curve abnormalities,” Int. J. Rock. Mech. Min. Sci., 43, NO.3, 483-493 (2006).

C. H. Yang, Y. Y. Wang, J. G. Li, and F. Gao, “Experimental study on the effect of water content on creep law of rock,” J. China. Coal. Soc., 32, NO.7, 695-699 (2007).

B. Liu, and D. X. Nie, “Study on the relationship between strength parameters of fault gouge and water content,”Chin. J. Geotech. Eng., 28, NO.12, 2164-2167 (2006).

H. Qin, G. Huang, and W. Z. Wang, “Experimental study on acoustic emission characteristics of coal and rock during deformation and failure under compression with different water content,” Chin. J. Rock. Mech. Eng., 31, NO.6, 1115-1120 (2012).

L. S. Tang, and S. J. Wang, “Experimental study of the macroscopic mechanical effects of rock on the chemical action of water and rock,” Chin. J. Rock. Mech. Eng., 21, NO.4, 526-531 (2002).

M. D. Deng, Z. F. Fang, X. F. Liu, N. G. Geng, and C. Y. Cui, “Research on the action of water in the infrared radiation of the rocks,” Earthquake. Res. China., 13, NO.3, 288-296 (1997).

S. J. Liu, L. X. Wu, Y. B. Zhang, and Q. L. Chen, “Change feature of infrared radiation from loaded damp rock,” J. Northeast. Univ., 31, NO.2, 1034-1038 (2010).

S. J. Liu, J. L. Wei, J. W. Huang, L. X. Wu, Y. B. Zhang, and B. Z. Tian, “Quantitative analysis methods of infrared radiation temperature field variation in rock loading process,” Chin. J. Rock. Mech. Eng., 34, NO.S1, 2968-2976 (2015).

S. J. Liu, and L. X. Wu, “Comparison of infrared radiation characteristics of brittle rock and plexiglass under stress,” Chin. J. Rock. Mech. Eng., 26, NO.S2, 4183-4183 (2007).

T. Chen, Q. L. Yao, M. Du, C. G. Zhu, and B. Zhang, “Experimental study on the number of times of water immersion on fracture development damage of coal sample,” Chin. J. Rock. Mech. Eng., NO.a02, 3756-3762 (2016).

Q. L. Yao, T. Chen , M. H. Ju, S. Liang, Y. P. Liu, and X. H. Li, “Effects of Water Intrusion on Mechanical Properties of and Crack Propagation in Coal,”. Rock Mech Rock Eng., 49, NO.12, 1-11 (2016).

Y. B. Zhang, C. P. Liu, P. Liang, X. X. Liu, and B. Z. Tian, “Experiment on sensitivity of water to infrared radiation temperature of siltstone fracture under stress,” J. Liaoning. Tech. Univ., 3, 259-264 (2016).

S. S. Mou, J. L. Wang, X. L. Cun, “Advanced mathematical statistics,” Higher Education Press, 2006.


Ссылки

  • На текущий момент ссылки отсутствуют.