ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЗАКРЕПЛЕНИЯ ИЗВЕСТЬЮ ЛЕССОВОГО ГРУНТА НА ЕГО УПЛОТНЯЕМОСТЬ И ВОДОПРОНИЦАЕМОСТЬ Experimental study of a compacted lime-treated loess on its hydraulic conductivity

Pan Liu, Xuejiao Zhang, Xueqiang Yang

Аннотация


Проведено экспериментальное исследование влияния содержания извести на характеристики уплотнения и водопроницаемость обработанного известью лесса. Результаты испытаний показали, что увеличение содержания извести приводит к снижению сухой плотности и увеличинию оптимальной влажности лесса. Эти зависимости являются нелинейными. При использовании
полулогарифмической шкалы графики зависимости гидравлической проводимости от пористости при насыщении представляют собой семейство параллельных прямых, соответствующих различному содержанию извести.


Литература


L.Z. Wu, Y. Zhou, P. Sun, J.S. Shi, G.G. Liu, and L.Y. Bai, “Laboratory characterization of rainfall-induced loess slope failure,” Catena, 150, 1-8 (2017).

J.J. Ni, X.W. Chen, C.W.W. Ng, and H.W. Guo, “Effects of biochar on water retention and matric suction of vegetated soil,” Geotech. Lett., 8(2), 124-129 (2018).

P. Liu, X.W. Zhou, and Y.B. He, “Bond yield characteristics of undisturbed completely decomposed granite,” Adv. Mater. Sci. Eng., 2015, 1-7 (2015). DOI: 10.1155/2015/325162.

S.B. Markovic, T. Stevens, G.J. Kukla, et al, “Danube loess stratigraphy-Towards a pan-European loess stratigraphic model,” Earth-Sci. Rev., 148, 228-258 (2015).

A. Eltner, P. Baumgart, H.G. Maas, and D. Faust, “Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil,” Earth. Surf. Proc. Land., 40(6), 741-755 (2015).

C. Chauvel, M. Garçon, S. Bureau, A. Besnault, B.M. Jahn, and Z.L. Ding, “Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust,” Earth. Planet. Sc. Lett., 388, 48-58 (2014).

V.I. Travush, A.V. Tsoi, and A.T. Marufii, “Influence of local wetting of loess soil on the redistribution of reactive pressures under foundations,” Soil. Mech. Found. Eng., 53(2), 67-70 (2016).

X.L. Wang, Y.P. Zhu, and X.F. Huang, “Field tests on deformation property of self-weight collapsible loess with large thickness,” Int. J. Geomech., 14(3), 04014001 (2014).

M.J. Jiang, F.G. Zhang, H.J. Hu, Y.J. Cui, and J.B. Peng, “Structural characterization of natural loess and remolded loess under triaxial tests,” Eng. Geol., 181, 249-260 (2014).

Q.F. Lv, C. Chang, B. Zhao, and B. Ma, “Loess soil stabilization by means of sio2 nanoparticles,” Soil. Mech. Found. Eng., 54(6), 409-413 (2018).

J. Kozubal and D. Steshenko, “The complex compaction method of an unstable loess substrate,” Arab. J. Geosci., 8(8), 6189-6198 (2015).

J. Kozubal, D. Steshenko, and B. Galay, “The improvement of loess substrates with a new type of soil column with a reliability assessment,” Road. Mater. Pavement., 15(4), 856-871 (2014).

J.D. Wang , Y. Ma, Q.Y. Guo , and D. Chu, “Influence of pressure and water content on loess collapsibility of the Xixian new area in Shaanxi province, China,” Earth. Sci. Res. J., 21(4),197-202 (2017).

Japanese Society of Soil Mechanics and Foundation Engineering (JSSMFE), Soil testing methods, 2nd revised edition, Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo (1982).

British Standards Institution (BSI), Methods of tests for soils for civil engineering purposes, British Standards Institution, London (1990).

H.J. Gibbs and W.Y. Holland, “Petrographic and engineering properties of loess,” Engineering Monograph, US Bureau of Reclamation, Denver, 1-37 (1960).

Y.R. Xu, C.F. Leung, J. Yu, and W.W. Chen, “Numerical modelling of hydro-mechanical behaviour of ground settlement due to rising water table in loess,” Nat. Hazards., 94, 241-260 (2018).

D.W. Taylor, Fundamental of soil mechanics, John Wiley and Sons, New York (1948).

M. Mbonimpa, M. Aubertin, R.P. Chapuis, and B. Bussiere, “Practical pedotransfer functions for estimating the saturated hydraulic conductivity,” Geotechnical and Geological Engineering, 20(3), 235-259 (2002).

T.M.P. de Campos, M.C.M. Alves, and R.F. Azevado, “Laboratory settling and consolidation of neutralized red mud,” Proc. 1st International Con. Environmental Geotechnics, Edmonton (1994).

Y. Fujiyasu and M. Fahey, “Experimental study of evaporation from saline tailings,” J. Geotech. Geoenviron. Eng., 126(1), 18-27 (2000).


Ссылки

  • На текущий момент ссылки отсутствуют.