ОЦЕНКА НЕСУЩЕЙ СПОСОБНОСТИ МОНОЛИТНЫХ БЕТОННЫХ СВАЙ В СКАЛЬНЫХ ГРУНТАХ Evaluation of Axial Capacity of Rock Socketed Cast-in-situ Concrete Piles

Hassan Mujtaba, Muhammad Tayyab Javed, Khalid Farooq, Nagaratnam Sivakugan, Braja M. Das

Аннотация


Приводятся результаты сравнения несущей способности при испытаниях свай на одноосное сжатие с теоретическими оценками для монолитных бетонных свай в скальных породах. Прочность на одноосное сжатие кернов горных пород (сланцы, алевролиты и песчаники) колебалась от 1,5 до 18 МПа. При этом несущая способность свай находилась в пределах от 2 до 6 МПа. Приведено уравнение для определения зависимости между предельной несущей способностью таких свай и характеристиками горных пород с использованием множественного линейного регрессионного анализа. Даны рекомендации по выбору удобных и экономичных методов определения несущей способности монолитных бетонных свай в скальных породах на осевую нагрузку.

Полный текст статьи публикуется в английской версии журнала "Soil Mechanics and Foundation Engineering" vol. 58, No.2.


Литература


Canadian Geotechnical Society, 2006. Canadian Foundation Engineering Manual, 4th edition Bitech Publishers Ltd., Vancouver, BC.

Kulkarni, R. U. and Dewaikar, D. M., (2017) A numerical approach to access the capacity of rock-socketed piles subjected to axial compression in Mumbai region based on the pile load test data, International Journal of Geotechnical Engineering, 441-451

Jaiswal, A. A., Kapse, N. S., Dode, P. A. and Chore, H, S., (2015), Methodology for Analysis of Socketed Piles in Weathered Rock in Mumbai Region, Proceedings on International Conference on Advancements in Engineering and Technology (ICAET 2015) ICQUEST 2015(6):1-4, October 2015

Look, B. and Lacey, D., (2013), Characteristics values in Rock Socket Design, Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013, 2795-2798

Akguner, C. and Kirkit, M., (2012), Axial Bearing capacity of socketed single cast-in-place piles, Soils and Foundations, 52(1), 59-68

Srinivasamurthy, B. R. and Pajur, K. L., (2009), Socketing of Bored Piles in Rock”, Indian Geotechnical Conference IGC, India, 679-691

Serrano, A. and Ollala, C., (2004), Shaft Resistance of a pile embedded in rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 41, 31-35

Pells, PJN., (1999), State of Practice for the Design of Socketed Piles in Rock, Proceedings 8th Australia New Zealand Conference on Geomechanics, Barton, 307-327.

Seidel, J.P. and Haberfield, C.M., (1995), The axial capacity of Pile socket in rocks and hard soils, Ground Engineering, 33-38

Rowe, R. K. and Armitage, H. H.,(1987), A design method for drilled piers in soft rock, Canadian Geotechnical Journal, Ottawa, Canada 24(1), 126–142.

Geotechnical Investigation Report for Karachi-Hyderabad Motorway (M9), (2016), National Engineering Services, Pakistan

Geotechnical Investigation Report for Parking Plaza at Jhika Gali, Murree, (2009), National Engineering Services, Pakistan

Geotechnical Investigation Report for Thotha Bridge, Muzaffarabad, (2014), National Engineering Services, Pakistan

ASTM D 1143, (2007), Standard Test Method for Pile under Static Axial Compressive Load, American Society for Testing and Materials, United States

Deere, D.U., Hendron, A.J., Patton, F.D. and Cording, E.J., (1967), Design of surface and

near surface construction in rock. In Failure and breakage of rock, Proceedings 8th U.S. symposium rock mechanics, 237-302, New York

Butler, H. D and Hoy, H. E., (1977) Users manual for the Texas Quick Load method for foundation load testing; Federal Highway Administration, Office of Development, Washington 59 PP

Hansen, J.B (1963), Discussion on hyperbolic stress strain response-Cohesive soils, ASCE Journal for Soil Mechanics and Foundation Engineering, 89, SM4, 241-242

Chin, F. k., (1970) Estimation of ultimate load of pile not carried to failure, In: Proceedings of the Second Southeast Asian Conference on Soil Engineering, Singapore pp 81-90

De Beer E. E. (1967) Proefondervindlijke bijdrage tot de studie van het grensdraag

vermogen van zandonder funderingen op staal. Tijdshift der Openbar Verken van Belgie, No. 6

Shen, R. F., Leung , C.F., Chow, Y.K., kog, Y.C. and Liao, B.K. (2002): negative skin friction on piles, proc. International Conference on physical modelling in geotechnics, St. Jhon’s Canada, 673-678

Davisson, M. T., (1972), High Capacity Piles, Proceedings of Lecture Series on Innovations in Foundation Construction, American Society of Civil Engineers, ASCE, Illinois Section, Chicago, 81–112.

Paikowsky, S. G. and Tolosko, T. A., (1999), Extrapolation of pile capacity from non-failed load tests, Report No. FHWA-RD-99-170, Federal Highway Administration (FHWA), Washington, DC

O’Neill, M. W. and Reese, L. C. (1999). “Drilled Shafts: Construction Procedures and Design Methods.” Report No. FHWA-IF-99-025, FHWA, Washington, DC., pp. 758.

Horvath, R. G., Kenney, T. C., and Kozicki, P. (1983). “Methods of Improving the Performance of Drilled Piers in Weak Rock,” Canadian Geotechnical Journal, Vol. 20, No. 4, pp. 758-772.

Horvath, R. G. and Kenney, T. C. (1979). “ Shaft Resistance of Rock-Socketed Drilled Piers,” Proceedings of Symposium on Deep Foundations, ASCE, pp. 182-214.

Carter, J. P., Kulhawy, F. H., 1988. Analysis and Design of Drilled Shaft Foundations Socketed into Rock, EPRIEL-5918. Ithaca, NewYork.

Reese, L. C. and O’Neill, M. W. (1988). “ Drilled Shafts: Construction Procedures and Design Methods,” Report No. FHWA-HI-88-042, FHWA, Washington, DC., pp. 564.

Rowe, R. K., and Armitage, H. H. (1987b). “ A Design Method for Drilled Piers in Soft Rock,” Canadian Geotechnical Journal, Vol., 24 No. 1, pp. 126-142.

Hoek, E. and Brown, E,T. (1980), Empirical Strength Criterion for Rock Masses, Journal of the Geotech. Engrg. Div., ASCE, Vol. 106, GT9, pp. 1013-1035.

Ladanyi, B. and Roy, A. (1971). Some Aspects ofBearing Capacity of Rock Mass Proceedings, 7th Canadian Symposium on Rock Mechanics, Edmonton, pp. 161-190.

Rowe, R.K and Armitage, H.H. (1987a). Theoretical Solutions for Axial Deformation of Drilled Shafts in Rock. Canadian Geotechnical Journal, Vol. 24, pp. 114-125.


Ссылки

  • На текущий момент ссылки отсутствуют.