ВЛИЯНИЕ ВЕРТИКАЛЬНЫХ НАПРЯЖЕНИЙ НА ХАРАКТЕРИСТИЧЕСКУЮ КРИВУЮ ВЗАИМОДЕЙСТВИЯ ГРУНТ-ВОДА ДЛЯ ЗОЛЫ УНОСА Vertical Stress Effects on Soil-Water Characteristics of Fly Ash

Qun Chen, Wei Su, Hongxin Wang

Аннотация


Выполнены лабораторные исследования для золы уноса кривой SWCC, отражающей зависимость между содержанием влаги и всасыванием, в условиях воздействия значительных вертикальных нагрузок, характерных при использовании этого массового продукта сжигания угля на тепловых электростанциях для устройства плотин высотой до 150 м. Выявленные закономерности используются для оценки: прочности на сдвиг, коэффициента диффузии, гидравлической проводимости и др. При анализе кривых десорбции и адсорбции были использованы  трехпараметрические эмпирические формулы Fredlund и Xing. На основании результатов испытаний и анализа создана концептуальная модель эволюции распределения размера пор для золы при высоких вертикальных нагрузках. Полученные расчётом параметры в основном согласуются с результатами
экспериментов.

Полный текст статьи публикуется в английской версии журнала «Soil Mechanics and Foundation Engineering” vol.59, No.3


Литература


S. Wang, A. Miller, E. Llamazos, F. Fonseca, and L. Baxter, “Biomass fly ash in concrete: mixture proportioning and mechanical properties,” Fuel, 87(3), 365-371 (2008).

C. Ferone, F. Colangelo, F. Messina, L. Santoro, and R. Cioffi, “Recycling of pre-washed municipal solid waste incinerator fly ash in the manufacturing of low temperature setting geopolymer materials,” Materials, 6(8), 3420-3437 (2013).

W. M. Gitari, L. F. Petrik, O. Etchebers, D. L. Key, and C. Okujeni, “Utilization of fly ash for treatment of coal mines wastewater: solubility controls on major inorganic contaminants,” Fuel, 87(12), 2450-2462 (2008).

Zhiyan Consulting Group, “Market research and investment strategy report on solid waste treatment equipment in China from 2015 to 2020,” Report No. R336742, Zhiyan Consulting Group, Beijing, China (2015).

S. K. Das and Yudhbir, “Geotechnical characterization of some Indian fly ashes,” J. Mater. Civil Eng., 17(5), 544-552 (2005).

S. R. Kaniraj and V. Gayathri, “Permeability and consolidation characteristics of compacted fly ash,” J. Energ. Eng., ASCE, 130(1), 18-43 (2004).

B. Kim and M. Prezzi, “Evaluation of the mechanical properties of class-F fly ash,” Waste Manage., 28(3), 649-659 (2008).

B. Kim, M. Prezzi, and R. Salgado, “Geotechnical properties of fly and bottom ash mixtures for use in highway embankments,” J. Geotech. Geoenviron. Eng., 131(7), 914-924 (2005).

A. A. B. Moghal, “Geotechnical and physico-chemical characterization of low lime fly ashes,” Advances in Materials Science and Engineering, 2013, (2013).

S. X. Chen, M. G. Feng, X. C. Xu, and S. Y. Chen, “Study of instability process and failure mechanism of ash storage dam in a power plant,” Rock and Soil Mechanics, 30(11), 3365-3371 (2009).

D. G. Fredlund, A. Xing, and S. Huang, “Predicting the permeability function for unsaturated soils using the soil-water characteristic curve,” Can. Geotech. J., 31(4), 533-546 (1994).

D. G. Fredlund, A. Xing, M. D. Fredlund, and S. L. Barbour, “The relationship of the unsaturated soil shear to the soil-water characteristic curve,” Can. Geotech. J., 33(3), 440-448 (1996).

D. G. Fredlund and A. Xing, “Equations for the soil-water characteristic curve,” Can. Geotech. J., 31(4), 521-532 (1994).

E. C. Leong and H. Rahardjo, “Review of soil-water characteristic curve equations,” J. Geotech. Geoenviron. Eng., 123(12), 1106-1117 (1997).

D. Abhijit and S. Sreedeep, “Evaluation of measurement methodologies used for establishing water retention characteristic curve of fly ash,” J. Test. Eval., 43(5), 1066-1077 (2015).

M. Chetia, and S. Sekharan, “Evaluation of different laboratory procedures for determining suction-water content relationship of cohesionless geomaterials,” J. Mater. Civil Eng., 28(2), 04015123 (2016).

C. Malaya and S. Sreedeep, “Critical evaluation of the drying water retention characteristics of a class-F Indian fly ash,” J. Mater. Civil Eng., 24(4), 451-459 (2012).

S. K. Vanapalli, D. G. Fredlund, and D. E. Pufahl, “The influence of soil structure and stress history on the soil-water characteristics of a compacted till,” Géotechnique, 49(2), 143-159 (1999).

T. Y. Elkady, A. M. Al-Mahbashi, and T. O. Al-Refeai, “Stress-dependent soil-water characteristic curves of lime-treated expansive clay,” J. Mater. Civil Eng., 27(3), 04014127 (2015).

C. F. Chiu and C. W. W. Ng, “Coupled water retention and shrinkage properties of a compacted silt under isotropic and deviatoric stress paths,” Can. Geotech. J., 49(8), 928-938 (2012).

C. W. W. Ng and Y. W. Pang, “Experimental investigations of the soil-water characteristics of a volcanic soil,” Can. Geotech. J., 37(6), 1252-1264 (2000a).

C. W. W. Ng and Y. W. Pang, “Influence of stress state on soil-water characteristics and slope stability,” J. Geotech. Geoenviron. Eng., 126(2), 157-166 (2000b).

Y. L Sun, Y. Q. Wei, X. Q. Cheng, and J. Z. Song, “Research on the influence of sub-dams heightening to the stress and deformation of ash dam body,” J. Hydraul. Eng., 45(S2), 39-44 (2014).

Ministry of Water Resources of the People's Republic of China, Standard for Soil Test Method. GB/T 50123-1999. Beijing, China (1999).

ASTM, Standard practice for classification of soils for engineering purposes. D2487. West Conshohocken, PA (2011).

J. M. Padilla, Y. Y. Perera, W. N. Houston, and D. G. Fredlund, “A new soil-water characteristic curve device,” Proc., Int. Symp. on Advanced Experimental Unsaturated Soil Mechanics, Trento, Italy, 27-29 (2005).

J. W. Hilf, “An investigation of pore-water pressure in compacted cohesive soils,” PhD thesis, US Department of the Interior, Bureau of Reclamation, Design and Construction Division, Denver, Colorado, USA (1956).

Electric Power Planning & Engineering Institute, Code of design of dry ash disposal area of fossil- fire power plant. DL/T 5488-2014, Beijing, China (2014).

Y. Z. Tan, X. J. Hu, B. Yu, H. Zhang, and W. Fu, “Water retention properties and mesomechanism of silt under consolidation effect,” Rock and Soil Mechanics, 34(11), 3077-3084 (2013).

J. P. Bouchaud, M. E. Cates, and P. Claudin, “Stress distribution in granular media and nonlinear wave equation,” J. Phys-Paris I, 5(6), 639-656 (1995).

O. Cuisinier and L. Laloui, “Fabric evolution during hydromechanical loading of a compacted silt,” Int. J. Numer. Anal. Met., 28(6), 483-499 (2004).

D. G. Fredlund, H. Rahardjo, and M. D. Fredlund, “Unsaturated soil mechanics in engineering practice,” John Wiley & Sons, New York, 109-272 (2012).

C. Zhou and C. W. W. Ng, “A new and simple stress-dependent water retention model for unsaturated soil,” Comput. Geotech., 62(2014), 216-222 (2014).


Ссылки

  • На текущий момент ссылки отсутствуют.