Исследование влияния щитовой проходки тоннеля на деформации окружающего массива грунта NUMERICAL INVESTIGATION OF THE THREE-DIMENSIONAL PERFORMANCES OF A SHIELD-MACHINE-BORED TUNNEL IN LOOSE SANDS

Bin- Chen Benson Hsiung

Аннотация


Исследовано влияние щитовой проходки тоннеля в рыхлом песке на окружающую застройку. Приведены данные о деформациях реальных сооружений и результаты физического моделирования ситуации различными исследователями. Показана сложность достоверного прогноза деформации поверхности при щитовой проходке тоннеля. Разработан метод численного расчета трехмерных деформаций, вызванных щитовой проходкой тоннеля в
песчаных грунтах, свойства которых описываются моделью с упрочнением. Рассмотрены результаты расчетов по оценке влияния различных факторов на деформацию поверхности при проходке. Проведено сравнение данных численного прогноза с результатами натурных наблюдений.

Полный текст статьи опубликован в английской версии журнала
"Soil Mechanics and Foundation Engineering".


Литература


Peck RB (1969) Deep excavation and tunnelling in soft ground. Proceeding of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State- of- the Art Volume 223- 290.

Cording EJ and Hansmire WH (1975) Displacements around tunnels. Proceeding of 6th Pan-American Conference of Soil Mechanics and Foundation Engineering, Buenos Aires, Argentina, 571-633.

Clough EJ and Schmidt B (1981) Design and performance of excavation and tunnels in soft clay. Soft clay engineering, edited by Brand EW and Brenner RP, 600-634.

O’Reilly MO and New BM (1982) Settlement above tunnels in the United Kingdom, their magnitude and prediction. Proceedings of Tunnelling ’82, Brighton, UK, 173-181.

Lambrughi A, Rodríguez ML, Castellanza R (2012) Development and validation of a 3D numerical model for TBM–EPB mechanised excavations. Computer and Geotechnics 40: 97- 113.

Do NA, Dias D, Oreste P and Djeran- Maigue I (2014) Three- dimensional numerical simulation of a mechanised twin tunnels in soft ground. Tunnelling and Underground Space Technology 42:40-51.

Zhang ZG and Huang MS (2014) Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil. Computers and Geotechnics 56: 121–132

Copur H, Aydin H, Bilgin N, Balci C and Dayanc C (2014) Predicting performance of EPB TBMs by using a stochastic model implemented into a deterministic model. Tunnelling and Underground Space Technology 42: 1-14.

Basile, F (2014) Effects of tunneling on pile foundations. Soils and Foundations 54(3): 280–295.

Goh KH and Mair RJ (2014) Response of framed buildings to excavation-induced movements. Soils and Foundations 54 (3), 250–268.

Farrell R, Mair RJ, Sciotti A and Pigorini A (2014) Building response to tunnelling. Soils and Foundations 54(3), 269–279.

Abd-el.rahim HHA, Mahonud E, Khalil AA and Ahmed ASH (2015) Twin tunnel configuration for Greater Cairo metro line No. 4. Computers and Geotechnics: 68 July: 66-77.

Likitlersuang S, Surarak C, Suwansawat S, Wanatowski D, Oh E and Balasubramaniam A (2014) Simplified finite-element modelling for tunnelling- induced settlements, Geotechnical Research, Institution of Civil Engineers 1(4):133-152

Zhang ZX, Liu C, Huang X, Kwok CY and Teng L (2016) Three-dimensional finite-element analysis on ground responses during twin-tunnel construction using the URUP method. Tunnelling and Underground Space Technology 58, September: 133–146.

Zare A and Bruland JR (2016) Evaluating D&B and TBM tunnelling using NTNU prediction models. Tunneling and Underground Space Technology 59 October: 55–64.

Vu MN, Broere W and Bosch J (2016) Volume loss in shallow tunneling. Tunnelling and Underground Space Technology 59 October: 77–90.

Bian X, Hong ZS and Ding JW (2016) Evaluating the effect of soil structure on the ground response during shield tunnelling in Shanghai soft clay. Tunnelling and Underground Space Technology 58 September: 120–132.

Chen SL, Lee SC and Wei YS (2016) Numerical analysis of ground surface settlement induced by Double- O tube shield tunnelling, Journal of Performance of Construction Facilities, ASCE 30(5):04016012

Culi L, Pujades E, Vázquez-Suñé E and Jurado A (2016) Modelling of the EPB TBM shield tunnelling advance as a tool for geological characterization. Tunnelling and Underground Space Technology 56 (6): 12–21.

Son M (2016) Response analysis of nearby structures to tunneling-induced ground movements in clay soils, Tunnelling and Underground Space Technology 56 (6): 90-104

Shi JW, Ng CWW and Chen YH (2015) Three- dimensional numerical parameter study on the influence of basement excavation on existing tunnel. Computer and Geotechnics, 63: 146- 158.

Hsiung BCB (2011) A case record of bored tunnel in sand based on the Kaohsiung Mass Rapid Transit System Project. Journal of GeoEngineering, December, 6 (3): 113- 123.

Hsiung, BCB (2002) Engineering performance of deep excavations in Taipei. PhD thesis, University of Bristol, UK.

Potts DM and Zdravkovic L (2001) Finite element analysis in geotechnical engineering -Application. Thomas Telford.

Mu L and Huang M (2016) Small strain based method for predicting three- dimensional soil displacements induced by braced excavation. Tunnelling and Underground Space Technology 52:12- 22

Hsiung BCB, Yang KH, Aila W and Ge L (2018) Evaluation of the wall deflections of a deep excavation in Central Jakarta using three-dimensional modelling. Tunnelling and Underground Space Technology 72:84- 96

Hsiung BCB, Yang KH, Aila W and Hung C (2016) Three- dimensional effects of a deep excavation on wall deflections in loose to medium dense sands. Computer and Geotechnics 80: 138- 151.

Dao SY (2015) Application of numerical analyses for deep excavation in soft ground. PhD thesis, National Kaohsiung University of Applied Sciences, Taiwan.

Wu WM (2016) Determination of Hardening Soil model parameters for deep excavation in loose sand and GIS application in safety assessment of adjacent buildings. MSc thesis, National Kaohsiung University of Applied Sciences, Taiwan (in Chinese).

Lai YC (2017) Application of Hardening Soil Small Strain Model in Examing Effectiveness of Cross Wall and Buttress Wall for Deep Excavation in Loose Sand. MSc thesis, National Kaohsiung University of Applied Sciences, Taiwan (in Chinese).

Melis M, Medina L and Rodriguez JM (2002) Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension. Canadian Geotechnical Journal 39: 1273- 1287.

Vineetha K, Boominathan A, and Banerjee S (2017) TBM- Ground interaction modelling. 19th International Conference of Soil Mechanics and Geotechnical Engineering, Seoul, Korea, 3311- 3314.

Hwang RN, Ju DH, Tsai MS and Fang YS (1995) Soil ground tunnelling in Taiwan, Proceeding of US/Taiwan Geotechnical Engineering Collaboration Workshop, 13- 16.

Park H, Chang S and Lee S (2014) 3-Dimensional numerical modeling of SPB shield TBM tunneling-induced ground settlement considering volume loss processes. Proceeding of Geotechnical Aspects of Underground Construction in Soft Ground, Seoul, South Korea, 221- 224

Zhao CY, Lavasan AA, Barciaga T, Zarev V, Datcheva M and Schanz T (2015) Model validation and calibration via back analysis for mechanised tunnel simulations – The Western Scheldt tunnel case. Computer and Geotechnics 60: 601- 614.

Kasper T and Meschke G (2006) A numerical study of the effect of soil and grout material properties and cover depth in shield tunnelling. Computer and Geotechnics 33:234- 247

Hsiung BCB and Lu LK (2009) Case record: a bored tunnel on Kaohsiung Rapid Transit System, Contract CR2. Journal of GeoEngineering, April, 3(1): 33- 40.

Pelia D, Borio L and Pelizza S (2011) The behaviour of a two- component back-filling grout used in a tunnel- boring machine. Acta Geotechnia Slovenica, 1: 5-15

Mair RJ (1993) Developments in geotechnical engineering research: application to tunnels and deep excavations. Proceedings of Institution of Civil Engineers: Civil Engineering, 93. pp. 27-41.


Ссылки

  • На текущий момент ссылки отсутствуют.